• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 01.11.24

Search results


July 2001
March 2001
Benjamin Avidan, MD, Ehud Melzer, MD, Nathan Keller, MD and Simon Bar-meir, MD

Background: Current treatment for the eradication of Helicobacter pylori in patients with peptic disease is based on the combination of antibiotic and anti-acid regimens. Multiple combinations have been investigated, however no consensus has been reached regarding the optimal duration and medica­tions.

Objectives: To assess the efficacy of two treatment regimens in patients with peptic ulcer disease and non-ulcer dyspepsia, and to determine the need for gastric mucosal culture in patients failing previous treatment.

Methods: Ninety patients with established peptic ulcer and NUD (with previously proven ulcer) were randomly assigned to receive either bismuth-subcitrate, amoxycillin and metrnida­zole (8AM) or lansoprasole, clarithromycine and metronida­zole (LCM) for 7 days. Patients with active peptic disease were treated with ranitidine 300 mg/day for an additional month.

Results: Eradication failed in 8 of the 42 patients in the 8AM group and in 2 of the 43 patients in the LCM group, as determined by the 13C urea breath test or rapid urease test (19% vs. 5%, respectively, P=0.05). Five of these 10 patients were randomly assigned to treatment with lansoprazole, amoxycillin and clarithromycin (LAC) regardless of the culture obtained, and the other 5 patients were assigned to treatment with lansoprazole and two antibacterial agents chosen according to a susceptibility test. Eradication of H. pylon was confirmed by the ‘3C urea breath test. The same protocol (LAC) was used in all patients in the first group and in four of the five patients in the second group. The culture results did not influence the treatment protocol employed.

Conclusions: Combination therapy based on proton pump inhibitor and two antibiotics is superior to bismuth-based therapy for one week. Gastric-mucosal culture testing for sensitivity of H. pylon to antibiotics is probably unnecessary before the initiation of therapy for patients with eradication failure.

January 2001
Patrick Sorkine, MD, Ron Ben Abraham, MD, Shlomo Brill, MD and Oded Szold, MD

In recent years liver transplantation was shown to be the only clinically effective method of treating acute or chronic hepatic failure due to various causes. However, this ultimate therapeutic approach is limited by the growing disparity between organ donation and the number of patient on the waiting list.

Factors such as high cost, morbidity, and the need for lifelong immunosuppression accelerated the research on alternative methods to support the failing liver. Recently, new technologies incorporating hepatocytes and extracorporal circulation devices were introduced for liver support systems and their role in the treatment of acute liver failure.

April 2000
Ella Zeltzer MD, Jacques Bernheim MD, Ze’ev Korzets MB BSc,, Doron Zeeli PhD, Mauro Rathaus MD, Yoseph A. Mekori MD and Rami Hershkoviz MD

Background: Cell-mediated immunity is impaired in uremia. Cell-matrix interactions of immune cells such as CD4+T lymphocytes with extracellular matrix are an important requirement for an intact immune response. The adherence of CD4+T cells of healthy subjects (normal T cells) to ECM components is inhibited in the presence of uremic serum. Such decreased adhesive capacity is also found in T cells of dialysis patients. Various chemokines and cytokines affect the attachment of CD4+T cells to ECM.

Objective: To evaluate chemokine (MIP-1β and RANTES) and tumor necrosis factor α-induced adhesion of CD4+T cells to ECM in a uremic milieu.

Methods: We examined adhesion of normal CD4+T cells (resting and activated) to intact ECM in response to soluble or bound chemokines (MIP-1β and RANTES) and to TNF-α following incubation in uremic versus normal serum. Thereafter, we evaluated the adhesion of resting CD4+T cells from dialysis patients in a similar fashion and compared it to that obtained from a healthy control group.

Results: Addition of uremic serum diminished soluble and anchored chemokine-induced attachment of normal resting and activated CD4+T cells to ECM compared to a normal milieu (a peak response of 10–11% vs. 24–29% for soluble chemokines, P<0.001; 12–13% vs. 37–39% for bound chemokines on resting cells, P<0.01; and 18–20% vs. 45–47% for bound chemokines on activated cells, P<0.02). The same pattern of response was noted following stimulation with immobilized TNF-α (7 vs. 12% for resting cells, P<0.05; 17 vs. 51% for activated cells, P<0.01).  Adherence of dialysis patients’ cells to ECM following stimulation with both bound chemokines was reduced compared to control T cells (15–17% vs. 25–32%, P<0.0000). In contrast, adherence following stimulation by TNF-α was of equal magnitude.

Conclusions: Abnormal adhesive capacity of T lymphocytes to ECM in uremia may, in part, be related to a diminished response to MIP-1β, RANTES and TNF-α. However, whereas reduced adhesion to chemokines was present in both normal CD4+T cells in a uremic environment and in dialysis patients’ T cells, TNF-α-induced adhesion was found to be inhibited only in normal cells in a uremic milieu.

____________________________

ECM = extracellular matrix

TNF-α = tumor necrosis factor-a

November 1999
Gideon Paret MD, Tamar Ziv MD, Arie Augarten MD, Asher Barzilai MD, Ron Ben-Abraham MD, Amir Vardi MD, Yossi Manisterski MD and Zohar Barzilay MD, FCCM

Background: Acute respiratory distress syndrome is a well-recognized condition resulting in high permeability pulmonary edema associated with a high morbidity.

Objectives: To examine a 10 year experience of predisposing factors, describe the clinical course, and assess predictors of mortality in children with this syndrome.

Methods: The medical records of all admissions to the pediatric intensive care unit over a 10 year period were evaluated to identify children with ARDS1. Patients were considered to have ARDS if they met all of the following criteria: acute onset of diffuse bilateral pulmonary infiltrates of non-cardiac origin and severe hypoxemia defined by <200 partial pressure of oxygen during ³6 cm H2O positive end-expiratory pressure for a minimum of 24 hours. The medical records were reviewed for demographic, clinical, and physiologic information including PaO22 /forced expiratory O2, alveolar–arterial O2 difference, and ventilation index.

Results: We identified 39 children with the adult respiratory distress syndrome. Mean age was 7.4 years (range 50 days to 16 years) and the male:female ratio was 24:15. Predisposing insults included sepsis, pneumonias, malignancy, major trauma, shock, aspiration, near drowning, burns, and envenomation. The mortality rate was 61.5%. Predictors of death included the PaO2/FIO2, ventilation index and A-aDO23 on the second day after diagnosis. Non-survivors had significantly lower PaO2/FIO2 (116±12 vs. 175±8.3, P<0.001), and higher A-aDO2 (368±28.9 vs. 228.0±15.5, P<0.001) and ventilation index (43.3±2.9 vs. 53.1±18.0, P<0.001) than survivors.

Conclusions: Local mortality outcome for ARDS is comparable to those in tertiary referral institutions in the United States and Western Europe. The PaO2/FIO2, A-aDO2 and ventilation index are valuable for predicting outcome in ARDS by the second day of conventional therapy. The development of a local risk profile may allow early application of innovative therapies in this population. 

___________________________________ 

1ARDS = acute respiratory distress syndrome

2 PaO2 = partial pressure of oxygen

3A-aDO2 = alveolar–arterial O2 difference

October 1999
Peretz Weiss MD, Meir Mouallem MD, Rafael Bruck MD, David Hassin MD, Amir Tanay MD, Chaim M. Brickman MD, Zvi Farfel MD and Simon Bar-Meir MD
 Background: Nimesulide is a relatively new non-steroidal anti-inflammatory drug that is gaining popularity in many countries because it is a selective cyclooxygenase 2 inhibitor. Occasionally, treatment is associated with mild elevation of liver enzymes, which return to normal upon discontinuation of the drug. Several cases of nimesulide-induced symptomatic hepatitis were also recently reported, but these patients all recovered.

Objectives: To report the characteristics of liver injury induced by nimesulide.

Patients and Methods: We report retrospectively six patients, five of them females with a median age of 59 years, whose aminotransferase levels rose after they took nimesulide for joint pains. In all patients nimesulide was discontinued, laboratory tests for viral and autoimmune causes of hepatitis were performed, and sufficient follow-up was available.

Results: One patient remained asymptomatic. Four patients presented with symptoms, including fatigue, nausea and vomiting, which had developed several weeks after they began taking nimesulide (median 10 weeks, range 2–13). Hepatocellular injury was observed with median peak serum alanine aminotransferase 15 times the upper limit of normal (range 4–35), reversing to normal 2–4 months after discontinuation of the drug. The remaining patient eveloped symptoms, but continued taking the drug for another 2 weeks. She subsequently developed acute hepatic failure with encephalopathy and hepatorenal syndrome and died 6 weeks after hospitalization. In none of the cases did serological tests for hepatitis A, B and C, Epstein-Barr virus and cytomegalovirus, as well as autoimmune hepatitis reveal findings.

Conclusions: Nimesulide may cause liver damage. The clinical presentation may vary from abnormal liver enzyme levels with no symptoms, to fatal hepatic failure. Therefore, monitoring liver enzymes after initiating therapy with nimesulide seems prudent.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel