• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 25.07.25

Search results


May 2025
Avishag Laish-Farkash MD PhD, Ella Yahud MD, Michael Rahkovich MD, Yonatan Kogan MD, Lubov Vasilenko MD, Emanuel Harari MD, Gergana Marincheva MD, Emma Shvets MA RNS, Eli I. Lev MD, Uri Farkash MD

Background: Uninterrupted antithrombotic treatment (ATT) during cardiac implantable electronic device (CIED) implantation increases bleeding and device-related infections (DRI) risk. The wide-awake-local-anesthesia-no-tourniquet (WALANT) technique, using large-volume local anesthesia and adrenaline, is successful in hand surgeries but its potential to mitigate bleeding risk in CIED implantations remains unknown.

Objectives: To investigate whether WALANT protocol for CIED implantations reduces clinically significant pocket hematoma in patients with a high bleeding risk or is a contraindication for interrupting ATT.

Methods: We conducted a prospective, double-blind, randomized controlled trial with CIED surgery patients on uninterrupted ATT. They received WALANT protocol (lidocaine 1% with adrenaline 1:100,000) or standard protocol (lidocaine 1%). Following implantation, patients were blindly monitored in the ward and pacemaker clinic. Patients were monitored for bleeding outcomes post-implantation.

Results: Forty-six consecutive patients (73.6 ± 9 years, 72% male) were enrolled. In the WALANT group (n=24) no intra-pocket pro-hemostatic agents were needed, compared to 45% in the control group (P = 0.0002). Postoperative pressure dressings were used in 12.5% vs. 68% (P = 0.0002). WALANT patients had smaller hematoma areas (median 3.7 cm2 IQR [1–39] vs. 46 cm2 [IQR 24–76], P = 0.0004) 1-day postoperative. ATT interruption occurred in 12.5% vs. 18% (P = 0.7). Superficial skin infection rates were 4% vs. 9% (P = 0.6). No DRI occurred. No WALANT-related side effects were observed.

Conclusions: WALANT protocol in CIED implantation with uninterrupted ATT reduced pro-hemostatic agents, pressure-dressing need, and hematoma size. Larger studies are needed to assess its impact on infection rates.

March 2025
Raouf Nassar MD, Nour Ealiwa MD, Lior Hassan MD PHD, Gadi Howard MD Msc, Rotem Shalev Shamay MD, Slava Kogan MD, Nadine Abboud MD, Baruch Yerushalmi MD, Galina Ling MD

Background: Wilson disease (WD) is an autosomal recessive disease characterized by a defect in hepatocellular copper transport with a wide spectrum of clinical manifestations and reported prevalence.

Objectives: To study the epidemiology and clinical manifestations of WD between two ethnic groups, Jewish and Bedouins, with different marriage patterns, in southern Israel.

Methods: We conducted a retrospective study investigating the clinical course and laboratory characteristics of children diagnosed with WD who were treated at Soroka University Medical Center.

Results: Sixteen patients were diagnosed between 2000 and 2021 (8 males, 50%), 14 were of Bedouins origin. The total cohort prevalence was 1:19,258 while the prevalence of the disease was significantly higher among Bedouins compared to Jews (1:10,828 vs.1:78,270, P-value = 0.004). The median age at diagnosis was 10.2 years, without a significant difference between the groups. The most common presenting symptom was hepatic manifestations: 81.2% had elevated transaminases, 12.5% had jaundice, 25% had neurological symptoms, one had a Kayser-Fleischer ring, and one had psychosis. The mean ceruloplasmin level was 3.0 mg/dl. During follow-up, nine patients normalized transaminases with treatment, while three required liver transplantation. There was no significant difference in the clinical presentation and disease course between the two ethnic groups.

Conclusions: Our cohort showed a high prevalence of WD compared to previous studies, especially among the Bedouin population, which has a high consanguinity rate. The prognosis of WD in our population is similar to other studies and depends mainly on treatment compliance.

November 2024
Tamar Slobodov MD, Gergana Marincheva MD, Michael Rahkovich MD, Andrei Valdman MD, Yonatan Kogan MD, Avishag Laish-Farkash MD PhD

Background: Cardiac implantable electronic devices (CIEDs) with endocardial leads crossing the tricuspid valve can lead to or worsen tricuspid regurgitation (TR), causing substantial morbidity and mortality. Despite a recent randomized controlled study revealing a low short-term incidence of device-related TR (DRT) post-CIED implantation, uncertainties persist regarding the efficacy of intra-procedural 2-dimensional transthoracic echocardiography (2DTTE) in preventing long-term TR.

Objectives: To conduct a long-term follow-up study on patients with CIED implants based on a previous study conducted at our hospital.

Methods: In a retrospective study at Assuta Ashdod Medical Center (2018–2019), patients undergoing de-novo CIED implantation with (n=39, group 1) or without (n=51, group 2) intra-procedural 2DTTE were analyzed. Clinical, demographic, and long-term (> 1 year) echocardiographic data were collected and compared.

Results: The study included 90 patients (mean age 72.3 ± 11.0 years, 63% male, 23% ICD, 50% active leads, follow-up 32.8 ± 11 months). TR aggravation was found in 25% of patients (13 in group 1, 10 in group 2), with no statistical difference between groups. Multivariate analysis identified a history of atrial fibrillation (AF) as the sole significant factor in long-term TR deterioration (OR=3.44, 95%CI 1.13–10.43, P = 0.029). Other clinical, demographic, echocardiographic, and device-related factors did not significantly contribute to long-term DRT.

Conclusions: After one-year post-CIED implantation, the incidence of DRT significantly increases. Intra-procedural 2DTTE does not effectively reduce long-term DRT, suggesting that implantation-related mechanisms are less likely the primary cause. AF likely plays a major role in the pathogenesis of long-term TR in this subset post-CIED implantation.

Yana Kakzanov MD, Yamama Alsana, Tal Brosh-Nissimov MD, Emanuel Harari MD, Michael Rahkovich MD, Yonatan Kogan MD, Emma Shvets RN MA, Gergana Marincheva MD, Lubov Vasilenko MD, Avishag Laish-Farkash MD PhD

Background: Cardiac implantable electronic devices (CIEDs) are associated with risks of device-related infections (DRI) impacting major adverse outcomes. Staphylococcus aureus (SA) is a leading cause of early pocket infection and bacteremia. While studies in other surgical contexts have suggested that nasal mupirocin treatment and chlorhexidine skin washing may reduce colonization and infection risk, limited data exist for CIED interventions.

Objectives: To assess the impact of SA decolonization on DRI rates.

Methods: We conducted a retrospective, single-center observational study on consecutive patients undergoing CIED interventions (March 2020–March 2022). All patients received pre-procedure antibiotics and chlorhexidine skin washing. Starting in March 2021, additional pre-treatment with mupirocin for SA decolonization was administered. DRI rates within 6 months post-implantation were compared between patients treated according to guidelines (Group 1) and those receiving mupirocin in addition to the recommended guidelines (Group 2).

Results: The study comprised 276 patients (age 77 ± 10 years; 60% male). DRI occurred in five patients (1.8%);80% underwent cardiac resynchronization therapy procedures. In Group 1 (n=177), four patients (2.2%) experienced DRI 11–48 days post-procedure; three with pocket infection (two with negative cultures and one with local Pseudomonas) and one with methicillin-sensitive SA endocarditis necessitating device extraction. In Group 2 (n=99), only one patient (1%) had DRI (Strep. dysgalactiae endocarditis) 135 days post-procedure (P = NS).

Conclusions: The routine decolonization of SA with mupirocin, in addition to guideline-directed protocols, did not significantly affect DRI rates. Larger prospective studies are needed to evaluate the preventive role of routine SA decolonization in CIED procedures.

January 2022
Gergana Marincheva MD, Tal Levi MD, Olga Perelshtein Brezinov MD, Andrei Valdman MD, Michael Rahkovich MD, Yonatan Kogan MD, and Avishag Laish-Farkash MD PhD

Background: Endocardial leads of permanent pacemakers (PPM) and implantable defibrillators (ICD) across the tricuspid valve (TV) can lead to tricuspid regurgitation (TR) or can worsen existing TR with subsequent severe morbidity and mortality.

Objectives: To evaluate prospectively the efficacy of intraprocedural 2-dimentional-transthoracic echocardiography (2DTTE) in reducing/preventing lead-associated TR.

Methods: We conducted a prospective randomized controlled study comparing echocardiographic results in patients undergoing de-novo PPM/ICD implantation with intraprocedural echo-guided right ventricular (RV) lead placement (Group 1, n=56) versus non-echo guided implantation (Group 2, n=55). Lead position was changed if TR grade was more than baseline in Group 1. Cohort patients underwent 2DTTE at baseline and 3 and/or 6 months after implantation. Excluded were patients with baseline TR > moderate or baseline ≥ moderate RV dysfunction.

Results: The study comprised 111 patients (74.14 ± 11 years of age, 58.6% male, 19% ICD, 42% active leads). In 98 patients there was at least one follow-up echo. Two patients from Group 1 (3.6%) needed intraprocedural RV electrode repositioning. Four patients (3.5%, 2 from each group, all dual chamber PPM, 3 atrial fibrillation, 2 RV pacing > 40%, none with intraprocedural reposition) had TR deterioration during 6 months follow-up. One patient from Group 2 with baseline mild-moderate aortic regurgitation (AR) had worsening TR and AR within 3 months and underwent aortic valve replacement and TV repair.

Conclusions: The rate of mechanically induced lead-associated TR is low; thus, a routine intraprocedural 2DTTE does not have a significant role in reducing/preventing it

August 2019
Michael J. Segel MD, Alexander Kogan MD, Sergey Preissman MD, Nancy Agmon-Levin MD, Aaron Lubetsky MD MSc, Paul Fefer MD, Hans-Joachim Schaefers MD and Ehud Raanani MD

Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, distinct pulmonary vascular disease, which is caused by chronic obstruction of major pulmonary arteries. CTEPH can be cured by pulmonary endarterectomy (PEA). PEA for CTEPH is a challenging procedure, and patient selection and the perioperative management are complex, requiring significant experience.

Objectives: To describe the establishment of a national CTEPH–PEA center in Israel and present results of surgery.

Methods: In this study, we reviewed the outcomes of PEA in a national referral, multi-disciplinary center for CTEPH–PEA. The center was established by collaborating with a high-volume center in Europe. A multidisciplinary team from our hospital (pulmonary hypertension specialist, cardiac surgeon, cardiac anesthesiologist and cardiac surgery intensivist was trained under the guidance of an experienced team from the European center.

Results: A total of 38 PEA procedures were performed between 2008 and 2018. We included 28 cases in this analysis for which long-term follow-up data were available. There were two hospital deaths (7%). At follow-up, median New York Heart Association (NYHA) class improved from III to I (P < 0.0001), median systolic pulmonary pressure decreased from 64 mmHg to 26 mmHg (P < 0.0001), and significant improvements were seen in right ventricular function and exercise capacity.

Conclusions: A national center for performance of a rare and complex surgical procedure can be successfully established by collaboration with a high-volume center and by training a dedicated multidisciplinary team.

December 2018
Hadas Ganer Herman MD, Zviya Kogan MD, Amran Dabas MD, Ram Kerner MD, Hagit Feit MD, Shimon Ginath MD, Jacob Bar MD MsC and Ron Sagiv MD

Background: Different clinical and sonographic parameters have been suggested to identify patients with retained products of conception. In suspected cases, the main treatment is hysteroscopic removal.

Objectives: To compare clinical, sonographic, and intraoperative findings in cases of hysteroscopy for retained products of conception, according to histology.

Methods: The results of operative hysteroscopies that were conducted between 2011 and 2016 for suspected retained products of conception were evaluated. Material was obtained and evaluated histologically. The positive histology group (n=178) included cases with confirmed trophoblastic material. The negative histology group (n=26) included cases with non-trophoblastic material.

Results: Patient demographics were similar in the groups, and both underwent operative hysteroscopy an average of 7 to 8 weeks after delivery/abortion. A history of vaginal delivery was more common among the positive histology group. The main presenting symptom in all study patients was vaginal bleeding, and the majority of cases were diagnosed at their routine postpartum/abortion follow-up visit. Sonographic parameters were similar in the groups. Intraoperatively, the performing surgeon was significantly more likely to identify true trophoblastic tissue as such than to correctly identify non-trophoblastic tissue (P < 0.001).

Conclusions: Suspected retained trophoblastic material cannot be accurately differentiated from non-trophoblastic material according to clinical, sonographic, and intraprocedural criteria. Thus, hysteroscopy seems warranted in suspected cases.

September 2018
Yael Peled MD, Dov Freimark MD, Yedael Har-Zahav MD, Eyal Nachum MD, Alexander Kogan MD, Yigal Kassif MD and Jacob Lavee MD

Background: Heart transplantation (HT) is the treatment of choice for patients with end-stage heart failure. The HT unit at the Sheba Medical Center is the largest of its kind in Israel.

Objectives: To evaluate the experience of HT at a single center, assess trends over 3 decades, and correlate with worldwide data.

Methods: Between 1990 and 2017, we reviewed all 285  adult HT patients. Patients were grouped by year of HT: 1990–1999 (decade 1), 2000–2009 (decade 2), and 2010–2017 (decade 3).

Results: The percentage of women undergoing HT has increased and etiology has shifted from ischemic to non-ischemic cardiomyopathy (10% vs. 25%, P = 0.033; 70% vs. 40% ischemic, for decades 1 vs. 3, respectively). Implantation of left ventricular assist device as a bridge to HT has increased. Metabolic profile has improved over the years with lower low-density lipoprotein, diabetes, and hypertension after HT (101 mg/dl, 27%, and 41% at decade 3, respectively). There has been a prominent change in immunosuppressive treatments, currently more than 90% are treated with tacrolimus, compared with 2.7% and 30.9% in decades 1 and 2, respectively (P < 0.001). Cardiac allograft vasculopathy (CAV) rates have declined significantly (47% vs. 17.5% for decades 1 and 2, P < 0.001) as have the combined endpoint of CAV/death. Similarly, the current incidence of acute rejections is significantly lower.

Conclusions: Our analysis of over 25 years of a single-center experience with HT shows encouraging improved results, which are in line with worldwide standards and experience.

March 2018
Narin N. Carmel-Neiderman MD, Idan Goren MD, Yishay Wasserstrum MD, Tal Frenkel Rutenberg MD, Irina Barbarova MD, Avigal Rapoport MD, Dor Lotan MD, Erez Ramaty MD, Naama Peltz-Sinvani MD, Adi Brom MD, Michael Kogan MD, Yulia Panina MD, Maya Rosman MD, Carmel Friedrich MD, Irina Gringauz MD, Amir Dagan MD, Iris Kliers MD, Tomer Ziv-Baran PhD and Gad Segal MD

Background: Accurate pulse oximetry reading at hospital admission is of utmost importance, mainly for patients presenting with hypoxemia. Nevertheless, there is no accepted or evidence-based protocol for such structured measuring.

Objectives: To devise and assess a structured protocol intended to increase the accuracy of pulse oximetry measurement at hospital admission.

Methods: The authors performed a prospective comparison of protocol-based pulse-oximetry measurement with non-protocol based readings in consecutive patients at hospital admission. They also calculated the relative percentage of improvement for each patient (before and after protocol implementation) as a fraction of the change in peripheral capillary oxygen saturation (SpO2) from 100%.

Results: A total of 460 patients were recruited during a 6 month period. Implementation of a structured measurement protocol significantly changed saturation values. The SpO2 values of 24.7% of all study participants increased after protocol implementation (ranging from 1% to 21% increase in SpO2 values). Among hypoxemic patients (initial SpO2 < 90%), protocol implementation had a greater impact on final SpO2 measurements, increasing their median SpO2 readings by 4% (3–8% interquartile range; P < 0.05). Among this study population, 50% of the cohort improved by 17% of their overall potential and 25% improved by 50% of their overall improvement potential. As for patients presenting with hypoxemia, the median improvement was 31% of their overall SpO2 potential.

Conclusions: Structured, protocol based pulse-oximetry may improve measurement accuracy and reliability. The authors suggest that implementation of such protocols may improve the management of hypoxemic patients.

August 2017
Liron Hofstetter MD, Sagit Ben Zekry MD, Naama Pelz-Sinvani MD, Michael Kogan MD, Vladislav Litachevsky MD, Avi Sabbag MD and Gad Segal MD
February 2017
Ido Lavee MD, Rojjer Najjar MD, Patrick Ben-Meir MD, Eyal Sela MD, Yanir Kassif MD, Omri Emodi MD and Leonid Kogan MD PhD
February 2016
Amjad Shalabi MD, Ehud Raanani MD, Amihai Shinfeld MD, Rafael Kuperstein MD, Alexander Kogan MD, Alexander Lipey MD, Eyal Nachum MD and Dan Spiegelstein MD

Background: Prolonged life expectancy has increased the number of elderly high risk patients referred for surgical aortic valve replacement (AVR). These referred high risk patients may benefit from sutureless bioprosthesis procedures which reduce mortality and morbidity.

Objectives: To present our initial experience with sutureless aortic bioprotheses, including clinical and echocardiographic results, in elderly high risk patients referred for AVR. 

Methods: Forty patients (15 males, mean age 78 ± 7 years) with symptomatic severe aortic stenosis underwent AVR with the 3F Enable™ or Perceval™ sutureless bioprosthesis during the period December 2012 to May 2014. Mean logistic EuroScore was 10 ± 3%. Echocardiography was performed preoperatively, intraoperatively, at discharge and at follow-up.

Results: There was no in-hospital mortality. Nine patients (22%) underwent minimally invasive AVR via a right anterior mini-thoracotomy and one patient via a J-incision. Four patients underwent concomitant coronary aortic bypass graft, two needed intraoperative repositioning of the valve, one underwent valve exchange due to inappropriate sizing, three (7.5%) had a perioperative stroke with complete resolution of neurologic symptoms, and one patient (2.5%) required permanent pacemaker implantation due to complete atrioventricular block. Mean preoperative and postoperative gradients were 44 ± 14 and 13 ± 5 mmHg, respectively. At follow-up, 82% of patients were in New York Heart Association functional class I and II.

Conclusions: Sutureless AVR can be used safely in elderly high risk patients with relatively low morbidity and mortality. The device can be safely implanted via a minimally invasive incision. Mid-term hemodynamic results are satisfactory, demonstrating significant clinical improvement.

 

Avi Moscovici MD, Michael Kogan MD, Iris Kliers MD, Olga Kukuy MD and Gad Segal MD
August 2013
E. Nachum, A. Shinfeld, A. Kogan, S. Preisman, S. Levin and E. Raanani
 Background: Patients with Marfan syndrome are referred for cardiac surgery due to root aneurysm with or without aortic valve regurgitation. Because these patients are young and frequently present with normal-appearing aortic cusps, valve sparing is often recommended. However, due to the genetic nature of the disease, the durability of such surgery remains uncertain.

Methods:  Between February 2004 and June 2012, 100 patients in our department suffering from aortic aneurysm with aortic valve regurgitation underwent elective aortic valve-sparing surgery. Of them, 30 had Marfan syndrome, were significantly younger (30 ± 13 vs. 53 ± 16 years), and had a higher percentage of root aneurysm, compared with ascending aorta aneurysm in their non-Marfan counterparts. We evaluated the safety, durability, clinical and echocardiographic mid-term results of these patients.

Results: While no early deaths were reported in either group, there were a few major early complications in both groups. At follow-up (ranging up to 8 years with a mean of 34 ± 26 months) there were no late deaths, and few major late complications in the Marfan group. Altogether, 96% and 78% of the patients were in New York Heart Association functional class I-II in the Marfan and non-Marfan groups respectively. None of the Marfan patients needed reoperation on the aortic valve. Freedom from recurrent aortic valve regurgitation > 3+ was 94% in the Marfan patients.

Conclusions: Aortic valve-sparing surgery in Marfan symdrome patients is safe and yields good mid-term clinical outcomes.

May 2012
J. Mejia-Gomez, T. Feigenber, S. Arbel-Alon, L. Kogan and A. Benshushan

For the past 15 years gynecological oncologists have been seeking ways to preserve woman’s fertility when treating invasive cervical cancer. For some women with small localized invasive cervical cancers, there is now hope for pregnancy after treatment. Many cases of cervical cancer are diagnosed in young woman who wish to preserve their fertility. As more women are delaying childbearing, fertility preservation has become an important consideration. The standard surgical treatment for stage IA2-IB1 cervical cancer is a radical hysterectomy and bilateral pelvic lymphadenectomy. This surgery includes removal of the uterus and cervix, radical resection of the parametrial tissue and upper vagina, and complete pelvic lymphadenectomy. Obviously the standard treatment does not allow women future childbearing. Radical trachelectomy is a fertility-sparing surgical approach developed in France in 1994 by Dr. Daniel Dargent for the treatment of early invasive cervical cancer. Young women wishing to bear children in the future may be candidates for fertility-preservation options. The radical trachelectomy operation has been described and performed abdominally, assisted vaginally by laparoscopy and robotically. In this review we discuss the selection criteria for radical trachelectomy, the various possible techniques for the operation, the oncological and obstetric outcomes, and common complications.

 


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime