• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Tue, 16.07.24

Search results


December 2023
Dana Brin MD, Vera Sorin MD, Noam Tau MD, Matan Kraus MD, Tom Sonin MD, Yiftach Barash MD, Evgeni Druskin MD, Eyal Klang MD, Christine Dan-Lantsman MD, Daniel Raskin MD, Elena Bekker MD, Shai Shrot MD, Amit Gutkind PhD, Olga Shouchat MD, Edith M. Marom MD, Michal M. Amitai MD

In this study, we analyzed computed tomography (CT) radiological findings from trauma treated at a single hospital in the aftermath of the terror attack in Israel on 7 October 2023. The study includes images from 34 consecutive patients, consisting of 33 males and 1 female, ranging in age from 19 to 68 years. The majority of these patients underwent both chest-abdominal-pelvic (76%) and head and neck CT scans (64.7%). Key findings highlight a high incidence of head and neck injuries (55.9%), chest trauma (44.1%), and various injuries such as soft tissue lacerations (100%), fractures particularly skull fractures at 32.4%, and brain hemorrhages (23.5%). The limitations of this study include its single-center scope and the focus on stable patients, which may bias the representation of injury types. This case series provides critical insights into the radiological impacts of large-scale terror events, emphasizing the importance of comprehensive preparedness and research in the field of mass-casualty incident response.

October 2021
Amir Krivoy MD, Shai Shrot MD, Matan Avrahami MD, Tsvi Fischel MD, Abraham Weizman MD, Yael Mardor PhD, David Guez PhD, Dianne Daniels PhD, Athos Katelaris BSc, David Last PhD, and Chen Hoffmann MD

Background: Only a small proportion of schizophrenia patients present with catatonic symptoms. Imaging studies suggest that brain motor circuits are involved in the underlying pathology of catatonia. However, data about diffusivity dysregulation of these circuits in catatonic schizophrenia are scarce.

Objectives: To assess the involvement of brain motor circuits in schizophrenia patients with catatonia.

Methods: Diffusion tensor imaging (DTI) was used to measure white matter signals in selected brain regions linked to motor circuits. Relevant DTI data of seven catatonic schizophrenia patients were compared to those of seven non-catatonic schizophrenia patients, matched for sex, age, and education level.

Results: Significantly elevated fractional anisotropy values were found in the splenium of the corpus callosum, the right peduncle of the cerebellum, and the right internal capsule of the schizophrenia patients with catatonia compared to those without catatonia. This finding showed altered diffusivity in selected motor-related brain areas.

Conclusions: Catatonic schizophrenia is associated with dysregulation of the connectivity in specific motoric brain regions and corresponding circuits. Future DTI studies are needed to address the neural correlates of motor abnormalities in schizophrenia-related catatonia during the acute and remitted state of the illness to identify the specific pathophysiology of this disorder.

March 2011
S. Shrot, E. Konen, M. Hertz and M. Amitai

Background: Assessment of small intestinal disease remains a challenge for both clinicians and radiologists. Modern magnetic resonance enterography (MRE) is a non-radiation modality that can demonstrate both intestinal wall pathologies and extraluminal lesions.

Objectives: To analyze the results of 213 MRE scans performed since 2005.

Methods: Consecutive MRE[1] scans performed in our academic medical center between December 2005 and November 2009 were reviewed for patients' demographic data, indications for the examination, and main imaging findings. The imaging findings recorded were mural changes and intraluminal filling defects; there were also mesenteric findings and extraintestinal inflammatory findings.

Results: During the study period 213 MRE scans were performed; 70% of them for proven or suspected Crohn's disease (CD) of the small bowel. Another indication was small bowel neoplasm (6% of the scans). Bowel wall thickening and enhancement were seen in 60% and 53% of MRE scans, respectively. Mesenteric involvement was found in 52% of the patients. Incidental extraintestinal findings were detected in 17% of the scans. In 22% of the scans there was no pathological finding.

Conclusions: Our 4-year clinical experience with MRE shows that this non-invasive and non-radiating modality is a powerful technique for evaluation and long-term follow-up of small bowel pathologies. The most common clinical indication was the evaluation of Crohn’s disease. With physicians’ increased awareness, the future use of MRE in the evaluation of other small bowel pathologies such as neoplasm and celiac disease will increase.






[1] MRE = magnetic resonance enterography



 
November 2008
G. Markel, A. Krivoy, E. Rotman, O. Schein, S. Shrot, T. Brosh-Nissimov, T. Dushnitsky, A. Eisenkraft
The relative accessibility to various chemical agents, including chemical warfare agents and toxic industrial compounds, places a toxicological mass casualty event, including chemical terrorism, among the major threats to homeland security. TMCE[1] represents a medical and logistic challenge with potential hazardous exposure of first-response teams. In addition, TMCE poses substantial psychological and economical impact. We have created a simple response algorithm that provides practical guidelines for participating forces in TMCE. Emphasis is placed on the role of first responders, highlighting the importance of early recognition of the event as a TMCE, informing the command and control centers, and application of appropriate self-protection. The medical identification of the toxidrome is of utmost importance as it may dictate radically different approaches and life-saving modalities. Our proposed emergency management of TMCE values the “Scoop & Run” approach orchestrated by an organized evacuation plan rather than on-site decontamination. Finally, continuous preparedness of health systems – exemplified by periodic CBRN (Chemical, Biological, Radio-Nuclear) medical training of both first responders and hospital staff, mandatory placement of antidotal auto-injectors in all ambulances and CBRN[2] emergency kits in the emergency departments – would considerably improve the emergency medical response to TMCE.

 


[1] TMCE = toxicological mass casualty event

[2] CBRN = chemical, biological, radio-nuclear 
Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel