• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Sat, 26.07.25

Search results


July 2002
Rami Sagi, MD, Eyal Robenshtok, MD, Lior H. Katz, MD, Shmuel Reznikovich, MMHF, Israel Hendler, MD, Lior Poles, MD, Ariel Hourvitz, MD, Boaz Tadmor, MD, Meir Oren, MD, Giora Martonovich, MD and Boaz Lev, MD

The threat of a disease outbreak resulting from biologic warfare has been of concern for the Israeli health system for many years. In order to be prepared for such an event the health system has formulated doctrines for various biologic agents and defined the logistic elements for the procurement of drugs. During the last 4 years, and especially after the West Nile fever epidemic in 2000, efforts to prepare the healthcare system and the relevant organizations were accelerated. The Director-General of the Ministry of Health nominated a Supreme Steering Committee to fill in the gaps and upgrade the preparedness of the health system for an unusual disease outbreak. This committee and its seven subcommittees established appropriate guidelines, communication routes among different organizations, and training programs for medical personnel. The anthrax outbreak in the United States found the healthcare system in the hub of the preparation process, and all modes of action were intensified. Further work by hospitals, primary care clinics and all other institutes should be initiated to maintain a state of proper preparedness.

Michael Huerta, MD, MPH and Alex Leventhal, MD, MPH

Recent events have drawn world attention to “mythological diseases” such as anthrax, plague and smallpox, which have been out of the spotlight for some decades. Much of our current knowledge of epidemic intervention and disease prevention was acquired over history through our experience with these very diseases, such that the sudden panic over the re-emergence of these historically well-known entities is perplexing. Over time, changes in the balance of the epidemiologic triangle have driven each of these disease systems towards a new equilibrium with which we are not familiar. While the pathogens may be similar, these are not the diseases of the past. These new disease systems are insufficiently described by the classic epidemiologic triangle, which lacks a dimension necessary for providing a valid model of the real-world effects of bioterror-related disease. Interactions within the classic epidemiologic triangle are now refracted through the prism of the global environment, where they are mediated, altered, and often amplified. Bioterror-associated diseases must be analyzed through the epidemiologic pyramid. The added dimension represents the global environment, which plays an integral part in the effects of the overall disease system. The classic triangle still exists, and continues to function at the base of the new model to describe actual agent transmission, but the overall disease picture should be viewed from the height of the fourth apex of the pyramid. The epidemiologic pyramid also serves as a practical model for guiding effective interventional measures.

Paul E. Slater, MD, MPH, Emilia Anis, MD, MPH and Alex Leventhal, MD, MPH, MPA

Because of its high case-fatality rate, its very high transmission potential, and the worldwide shortage of effective vaccine, smallpox tops international lists of over a dozen possible bioterror and biologic warfare agents. In a scenario involving aerosol variola virus release, tens to hundreds of first-generation cases would ensue, as would hundreds to thousands of subsequent cases resulting from person-to-person transmission. A smallpox outbreak in Israel must not be regarded as a doomsday event: the methods of smallpox outbreak control are known and will be implemented. The rapidity with which organized outbreak control measures are competently executed will determine how many generations of cases occur before the outbreak is brought under control. Planning, vaccine stockpiling, laboratory expansion, professional training and public education, all carried out well in advance of an epidemic, will minimize the number of casualties. The reinstitution of routine smallpox vaccination in Israel, as in other countries, must be given serious consideration, since it has the potential for eliminating the threat of smallpox as a bioterror agent.

Raymond Kaempfer, PhD, Gila Arad, PhD, Revital Levy, BA and Dalia Hillman, BA

Background: Superantigens produced by Staphylococcus aureus and Streptococcus pyogenes are among the most lethal of toxins. Toxins in this family trigger an excessive cellular immune response leading to toxic shock.

Objectives: To design an antagonist that is effective in vivo against a broad spectrum of superantigen toxins.

Methods: Short peptide antagonists were selected for their ability to inhibit superantigen-induced expression of human genes for cytokines that mediate shock. The ability of these peptides to protect mice against lethal toxin challenge was examined.

Results: Antagonist peptide protected mice against lethal challenge with staphylococcal enterotoxin B and toxic shock syndrome toxin-1, superantigens that share only 6% overall amino acid homology. Moreover, it rescued mice undergoing toxic shock. Antagonist peptides show homology to a β-strand/hinge/a-helix domain that is structurally conserved among superantigens, yet remote from known binding sites for the major histocompatibility class II molecule and T cell receptor that function in toxic T cell hyperactivation.

Conclusions: The lethal effect of superantigens can be blocked with a peptide antagonist that inhibits their action at the top of the toxicity cascade, before activation of T cells occurs. Superantigenic toxin antagonists may serve not only as countermeasures to biologic warfare but may be useful in the treatment of staphylococcal and streptococcal toxic shock, as well as in some cases of septic shock.
 

Amir Vardi, MD, Inbal Levin, RN, Haim Berkenstadt, MD, Ariel Hourvitz, MD, Arik Eisenkraft, MD, Amir Cohen, MD and Amital Ziv, MD

With chemical warfare becoming an imminent threat, medical systems need to be prepared to treat the resultant mass casualties. Medical preparedness should not be limited to the triage and logistics of mass casualties and first-line treatment, but should include knowledge and training covering the whole medical spectrum. In view of the unique characteristics of chemical warfare casualties the use of simulation-assisted medical training is highly appropriate. Our objective was to explore the potential of simulator-based teaching to train medical teams in the treatment of chemical warfare casualties. The training concept integrates several types of skill-training simulators, including high tech and low tech simulators as well as standardized simulated patients in a specialized simulated setting. The combined use of multi-simulation modalities makes this maverick program an excellent solution for the challenge of multidisciplinary training in the face of the looming chemical warfare threat.

May 2002
Marius Berman, MD, Israel L. Nudelman, MD, Zeev Fuko, MD, Osnat Madhala, MD, Margalit Neuman-Levin, MD and Shlomo Lelcuk, MD

Background: The mortality rate for cholecystectomy for acute cholecystitis in the elderly is 10% in low risk patients and increases threefold in high risk patients. Ultrasound-guided percutaneous transhepatic cholecystostomy may serve as a rapid and relatively safe tool to relieve symptoms of sepsis and decrease gallbladder distension.

Objective: To determine the safety and effectiveness of PTC[1] in the treatment of acute cholecystitis in elderly debilitated high risk patients.

Methods: The study sample included 10 patients aged 63–88 (mean 77.6 years) with clinical and sonographic signs of acute cholecystitis for more than 48 hours (fever, white blood cells > 12,000/mm³, positive Murphy sign and distended gallbladder) who underwent ultrasound guided PTC. All had severe underlying disease (coronary heart disease, renal failure, chronic obstructive pulmonary disease, and others) that places them at high risk for surgical intervention.

Results: Eight patients showed rapid regression of the clinical symptoms following PTC drainage. One patient, with bacterial endocarditis, was febrile for 5 days after catheter insertion, but with rapid resolution of the biliary colic and sepsis. One patient died from perforation of the gallbladder and small bowel. PTC catheters were withdrawn 3–25 days after the procedure, and the patients remained free of biliary symptoms. Two patients underwent successful elective cholecystectomy 3 weeks later.

Conclusion: PTC may be a safe and effective treatment for high risk elderly patients with acute cholecystitis. It can be followed by elective cholecystectomy if the underlying condition improves, as soon as the patient stabilizes and no sepsis is present, or by conservative management in high surgical-risk patients.






[1] PTC = percutaneous transhepatic cholecystostomy


Daphna Weinstein, MD, Mehrdad Herbert, MD, Noa Bendet, MD, Judith Sandbank, MD and Ariel Halevy, MD

Background: Carcinoma of the gallbladder is diagnosed in 0.3–1.5% of all cholecystectomy specimens.

Objectives: To establish the overall rate of gallbladder carcinoma and unexpected gallbladder carcinoma based on our experience.

Methods: We retrospectively evaluated all consecutive cholecystectomies performed in our ward during a 6 year period in order to determine the incidence of gallbladder carcinoma and to identify common characteristics of this particular group of patients.

Results: Of the 1,697 cholecystectomies performed in our ward during the 6 years, gallbladder carcinoma was diagnosed in six patients (0.35%), but was not suspected prior to surgery in any of them. In accordance with the literature, the occurrence in women (5/6) was higher than in men (1/6). The mean age was 70 years (range 55–90). The most common symptom was abdominal pain; the majority (5/6) had cholelithiasis, and the pathologic report confirmed the diagnosis of adenocarcinoma in all six patients.

Conclusions: The overall incidence of unsuspected gallbladder carcinoma in our series was 0.35%. We could not find any common characteristics for this particular group of patients when compared to patients with non-malignant pathology.

Israel Dudkiewicz, MD, Rami Levi, MD, Alexander Blankstein, MD, Aharon Chechick, MD and Moshe Salai, MD

Background: Open reduction and internal fixation are the current trends of treatment for comminuted calcaneal fractures. Assessing treatment results is often difficult due to discrepancy between objective parameters such as range of movement, and subjective results such as pain.

Objectives: To test the reliability of footprint analysis as an adjuvant method of postoperative assessment of patients who sustained calcaneal fractures.

Methods: Dynamic and static footprint analysis was used as an adjuvant method to objectively assess operative results. This method is simple and is independent of the patient’s initiatives. This modality was used in 22 patients followed-up 9–90 months postoperatively.

Results: We found a good correlation between footprint analysis and objective and subjective parameters of results expressed by the American Orthopedic Foot and Ankle Society hind foot score. In certain cases, this method can be used to distinguish between uncorrelated parameter results, such as malingering, and workmens’ compensation claims.

Conclusion: We recommend the use of this simple, non-invasive objective test as an additional method to assess the results of ankle and foot surgery treatment.
 

Tatiana Fadeeva, MD, Yair Levy, MD, Gisele Zandman-Goddard, MD, Segal Tal, MD and Marina Perelman, MD
April 2002
Abraham Adunsky, MD, Rami Levi, MD, Aharon Cecic, MD, Marina Arad, MD, Shlomo Noy, MD and Vita Barell, BA

Background: The progressive increase in the number of elderly patients with hip fractures and the particular multidisciplinary needs of this population call for the investigation of other models of orthogeriatric care.

Objectives: To describe the nature and assess the feasibility of a comprehensive orthogeriatric unit attending to patients' surgical, medical and rehabilitation needs in a single setting.

Methods: This retrospective chart review describes consecutive older patients with hip fractures admitted directly from the emergency ward to an orthogeriatric ward.

Results: The mean age of the 116 patients evaluated was 82.4 years. Delay to surgery was 3.6±3.1 days and total length of stay 23.9±11.0 days. No patient was transferred to other acute medical wards of the hospital and 66.4% were able to return to their previous living place. Rates of major complications and mortality were extremely low.

Conclusion: The present model of a comprehensive orthogeriatric ward is a practical, applicable and feasible service for elderly hip fracture patients and can cover the various needs of these patients. The deployment arrangements needed to establish and operate the ward were minimal and there were only a few management and organizational problems. The cost-effectiveness and other comparative benefits of this type of service have yet to be clarified.
 

Gil Siegal, MD, Jacob Braun, MD, Avraham Kuten, MD, Tzahala Tzuk-Shina, MD, Louise M. Lev, MD, Ines Misselevitch, MD and Michal Luntz, MD
March 2002
Moshe Wald, MD, Sarel Halachmi, MD, Gilad Amiel, MD, Shahar Madjar, MD, Michael Mullerad, MD, Ines Miselevitz, MD, Boaz Moskovitz, MD and Ofer Nativ, MD

Background: The bladder tumor antigen stat is a simple and fast one-step immunochromatographic assay for the detection of bladder tumor-associated antigen in urine.

Objectives: To evaluate the BTA[1] stat in non-bladder cancer patients in order to identify the categories contributing to its low specificity.

Methods: A single voided urine sample was collected from 45 patients treated in the urology clinic for conditions not related to bladder cancer. Each urine sample was examined by BTA stat test and cytology.

Results: The overall specificity of the BTA stat test was 44%, which was significantly lower than that of urine cytology, 90%. The false positive rates for BTA stat test vary among the different clinical categories, being highest in cases of urinary tract calculi (90%), and benign prostatic hypertrophy (73%). Exclusion of these categories from data analysis improved BTA stat specificity to 66%.

Conclusions: Clinical categories contributing to low BTA stat specificity can be identified, and their exclusion improves the specificity of this test.






[1] BTA = bladder tumor antigen


Alp Aydinalp, MD, Alice Wishniak, MD, Lily van den Akker-Berman, MD, Tsafrir Or and Nathan Roguin, MD

Background: Myocardial infarction-associated pericarditis is a common cause of chest pain following MI[1], its frequency depending on how it is defined.

Objectives: To investigate the incidence of acute pericarditis and pericardial effusion in the acute phase of ST-elevation MI treated with thrombolytic therapy.

Methods: The study group comprised 159 consecutive patients fulfilling the criteria for acute MI who were admitted to our department during 18 months. Infarct-associated pericarditis was defined as the finding of a pericardial friction rub, a typical pleuropericardial pain, or both. All patients underwent physical examination of the cardiovascular system four times daily for 7 days, as well as daily electrocardiogram and echo Doppler examinations.

Results: Fourteen patients (8.8%) developed a friction rub and 11 patients (6.9%) had a mild pericardial effusion. Six patients (4.0%) had both a friction rub and pericardial effusion. Two patients had a friction rub for more than 7 days. Pleuropericardial chest pain was present in 31 patients (19.5%) but only 7 of them had a friction rub.  The in-hospital mortality rate was 1.3% and no mortality was observed in the acute pericarditis group.

Conclusion: The incidence of signs associated with acute pericarditis was lower in MI patients treated with thrombolysis, compared with historical controls, when a friction rub and/or pericardial effusion was present. There was no significant reduction in the incidence of pleuropericardial chest pain.






[1] MI = myocardial infarction


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime