• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Wed, 18.06.25

Search results


February 2025
Alena Kirzhner MD, Hefziba Green MD, Ronit Koren MD, Haitham Abu Khadija MD, Danielle Sapojnik MS, Tal Schiller MD

Background: The prognostic significance of diabetes mellitus (DM) on hospitalization outcomes of patients with acute decompensated heart failure (ADHF) remains inconclusive.

Objectives: To comprehensively assess the clinical outcomes of patients with and without DM hospitalized for ADHF.

Methods: This single center retrospective cohort study included consecutive hospitalized patients with a principal diagnosis of ADHF between 1 January 2010 and 31 December 2019. Patients were categorized into diabetic and non-diabetic groups. The primary outcomes assessed were in-hospital mortality, 1-year overall mortality, and readmission rate within a year of follow-up.

Results: The final analysis involved 787 ADHF patients, with 62% having a pre-existing diagnosis of DM. Despite a higher burden of co-morbidities in diabetic patients, there were no differences in clinical outcomes when compared to non-diabetic counterparts. Specifically, there were no differences in overall hospital mortality (10% vs. 10%, P = 0.675), 1-year mortality (22% vs. 25%, P = 0.389), and re-admissions (51% vs. 56%, P = 0.154). Notably, the 1-year mortality among diabetic patients was not influenced by HbA1c levels documented before or during admission.

Conclusions: The clinical outcomes of patients hospitalized with ADHF did not differ by the presence of diabetes. Instead, our findings emphasize the importance of early heart failure prevention and subsequent hospitalization. Considering the evolving landscape of disease-modifying therapies for heart failure, achieving this goal becomes increasingly feasible.

Abed Qadan MD, Nir Levi MD, Tal Hasin MD

Diabetes mellitus (DM) is a serious and growing global health challenge. The number of people diagnosed with diabetes continues to rise, and it is projected that by 2035 more than 592 million individuals worldwide will have diabetes [1]. DM can impact the heart through various mechanisms. Vascular complications are associated with diabetes and include both epicardial coronary artery and small vessel disease. Cardiomyopathy and heart failure may also occur. Insulin resistance causes cardiomyocytes to have a reduced capacity for glucose utilization, leading to increased uptake of free fatty acids. This, in turn, results in triglyceride storage and lipotoxicity, which contribute to impaired cardiac contractility [2].

Diabetes may lead to the production of advanced glycation end (AGE) products, resulting in an accumulation of reactive oxygen species. This accumulation triggers inflammation that can cause myocyte apoptosis and mitochondrial dysfunction. AGE can also contribute to cardiac fibrosis, which increases myocardial stiffness and results in heart failure with preserved ejection fraction (HFpEF) [2].

November 2024
Anna Rozenfeld MD, Aliza Goldman RN MSC, Tal Stern BS, Shmuel Banai MD, Yacov Shacham MD

Background: One-third of patients with acute decompensated heart failure (ADHF) develop worsening kidney function, known as type I cardiorenal syndrome (CRS). CRS is linked to higher mortality rates, prolonged hospital stays, and increased readmissions.

Objectives: To explore the impact of real-time monitoring of urinary output (UO) trends on personalized pharmacologic management, fluid balance, and clinical outcomes of patients with ADHF admitted to a cardiac intensive care unit.

Methods: Our study comprised 35 patients who were hospitalized with ADHF and continuously monitored for UO (UOelec). Standard diuretic and fluid protocols were implemented after 2 hours of oliguria, and patient outcomes were compared to a historical matched control (HMC) group. Patients were assessed for daily and cumulative fluid balance (over 72 hours) as well as for the occurrence of acute kidney injury (AKI).

Results: Significantly more patients in the UOelec group demonstrated negative fluid balance daily and cumulatively over time in the intensive care unit compared to the HMC group: 91% vs. 20%, respectively (P < 0.0001 for 72-hour cumulative fluid balance). The incidence of AKI was significantly lower in the UOelec monitoring cohort compared to the HMC: 23% vs. 57%, respectively (P = 0.003). Moreover, higher AKI resolution, and lower peak serum creatinine levels were demonstrated in the UOelec group vs. the HMC group.

Conclusions: Implementing real-time monitoring of UO in ADHF patients allowed for early response to oliguria and goal-directed adjustment to treatment. This finding ultimately led to reduced congestion and contributed to early resolution of AKI.

September 2024
Mohamad Arow MD, Yonatan Shneor Patt MD, Zehavit Kirshenboim MD, Roy Mashiach MD, Howard Amital MD MHA

In this case report, we elucidated the complex etiology of new-onset ascites through the unusual presentation of a 32-year-old female with abdominal swelling, oliguria, and acute renal failure. This patient's ascites was attributed to urinary bladder rupture, a rare but critical consideration in differential diagnoses. Highlighting the significance of this case, bladder rupture without recent trauma history, especially post-gynecological surgery, poses a diagnostic challenge due to its rarity and potential for severe morbidity and mortality if not promptly recognized and managed. Our patient's journey, from initial symptoms to the eventual discovery of bladder rupture, underscores the necessity of considering this diagnosis in similar clinical scenarios. The case uniquely demonstrates pseudo-renal failure, a phenomenon resulting from reversed dialysis across the peritoneal membrane, which further complicated the diagnostic process.

Gassan Moady MD, Michal De Picciotto, Naila Aslan MA, Shaul Atar MD

Background: Heart failure (HF) is an emerging pandemic associated with increased mortality, recurrent hospitalizations, and reduced quality of life. Guideline-directed medical therapy has been shown to improve outcomes, particularly in patients with HF with reduced ejection fraction (HFrEF). The main goal of HF clinics is optimizing medical therapy.

Objectives: To assess the impact of our HF clinic on medical therapy and clinical outcomes.

Methods: We obtained demographic, echocardiographic, and clinical data of patients listed in our HF clinic during a 4-year period. Medical therapy was evaluated based on patient reports and documented data. Recurrent admissions for HF were documented.

Results: A total of 317 patients (74.1% male, median age 66 years, IQR 55–74) were listed in the clinic with a total of 1140 visits. Of these patients, 62.5% had HFrEF, 20.5% presented with mildly reduced ejection fraction, and 17% showed preserved ejection fraction at the time of the first visit. The use of sodium glucose co-transporter 2 inhibitors and mineralocorticoid receptor antagonists was optimized in 92% and 91% of the patients, respectively. In the subgroup of patients with HFrEF, the use of angiotensin-receptor antagonist/neprilysin inhibitor increased from 22.6% to 87.9% (P < 0.001) and SGLT2 inhibitor use increased from 49.2% to 92% (P < 0.001). During the follow-up period (2.2 years, IQR 1.1–3.1), 203 patients (64%) were readmitted to the hospital for HF at least once. The rate of readmissions decreased over time.

Conclusions: An HF clinic plays an important role in optimizing medical therapy and reducing readmissions.

Sharon Slomovich MD, Visala Natarajan MBA, Gal Rubinstein MD, Pavel Gozenput MD, Benhoor Shamian MD

Hepatitis E Virus (HEV), a single-stranded RNA virus, is the leading cause of viral-induced acute liver failure globally. It is estimated to infect 20 million people annually, resulting in 3.3 million symptomatic cases and 44,000 deaths, worldwide [1]. Transmission is fecal-oral through contaminated food and water, zoonotic spread, or blood transfusions, and usually results in a self-limiting disease. While prevalent in resource-limited countries, cases are sporadic in the developed world [1]. Established risk factors for severe HEV infection include pregnancy, immunocompromised state, and underlying liver disease, while reports of malignancy as a predisposing factor are not well documented [1]. Here we present a case of a patient who, without established risk factors, developed a severe HEV infection leading to multiorgan failure and death.

June 2024
Ehud Jacobzon MD, Avital Lifschitz RN, Danny Fink MD, Tal Hasin MD

Background: Left ventricular assist devices (LVAD) are a staple element in contemporary treatment of advanced heart failure. LVAD surgeries are mostly done in heart transplantations centers, as a destination therapy or as a bridge to heart transplantation.

Objectives: To describe our step-by-step experience in establishing and implementing a new LVAD program in a non-heart transplant center. To give insight to our short- and long-term results of our first 25 LVAD patients.

Methods: Preliminary steps included identifying the need for a new program and establishing the leading team. Next is defining protocols for pre-operative evaluation, operating room, post-operative management, and outpatient follow-up. The leading team needs to educate other relevant units in the hospital that will be involved in the care of these patients. It is essential to work in collaboration with a heart transplant center from the very beginning. Patient selection is of major importance especially in the early experience. Initially “low risk” patients should be enrolled.

Results: We describe our first 25 LVAD patients. Our first five patients all survived beyond 2 years, with no major complications. Overall, there was one operative death due to massive GI bleeding. There were four late deaths due to septic events.

Conclusions: Establishing a new LVAD program can be successful also with small- and medium-size programs. With careful and meticulous planning LVAD implantation can be extended to more centers thus offering an excellent solution for advanced heart failure patients.

Yacov Shacham MD

Among patients admitted with acute decompensated heart failure (ADHF), deterioration of renal function with resulting acute kidney injury (AKI) is reported in up to 70% of patients with cardiogenic shock. Twenty percent of heart failure patients with AKI progress to dialysis (AKI-D). Optimal timing for initiation of renal replacement therapies (RRT) has been researched; however, minimal studies discuss guidelines for weaning from RRT [1]. Electronic monitoring of urine output (UO) may serve as a tool to aid in withdrawal from RRT. We present a case of ADHF with severe AKI requiring continuous renal replacement therapy (CRRT) where real-time electronic monitoring of UO was implemented for the first time to guide de-escalation therapy from CRRT until successful withdrawal.

March 2024
Jill Savren Lotker MD, Ariel Roguin MD PhD, Arthur Kerner MD, Erez Marcusohn MD, Ofer Kobo MD PhD

Background: Patients with inflammatory bowel disease (IBD) are at increased risk after percutaneous coronary intervention (PCI).

Objectives: To compare the clinical outcomes within 30 days, one year, and five years of undergoing PCI.

Methods: We conducted a retrospective cohort study of adult patients with IBD who underwent PCI in a tertiary care center from January 2009 to December 2019.

Results: We included 44 patients, 26 with Crohn’s disease (CD) and 18 with ulcerative colitis (UC), who underwent PCI. Patients with CD underwent PCI at a younger age compared to UC (57.8 vs. 68.9 years, P < 0.001) and were more likely to be male (88.46% of CD vs. 61.1% of UC, P < 0.03). CD patients had a higher rate of non-steroidal treatment compared to UC patients (50% vs. 5.56%, P < 0.001). Acute coronary syndromes (ACS) and/or the need for revascularization (e.g., PCI) were the most common clinical events to occur following PCI, in both groups. Of patients who experienced ACS and/or unplanned revascularization within 5 years, 25% of UC vs. 40% of CD had target lesion failure (TLF) due to in-stent restenosis and 10% of CD had TLF due to stent thrombosis.

Conclusions: We observed higher rates of TLF in IBD patients compared to the general population as well as differences in clinical outcomes between UC and CD patients. A better understanding of the prognostic factors and pathophysiology of these differences may have clinical importance in tailoring the appropriate treatment or type of revascularization for this high-risk group.

February 2024
Natalie Nathan MD, Michael Saring MD, Noam Savion-Gaiger MD, Kira Radinsky PhD, Alma Peri MD

A rise in the incidence of chronic health conditions, notably heart failure, is expected due to demographic shifts. Such an increase places an onerous burden on healthcare infrastructures, with recurring hospital admissions and heightened mortality rates being prominent factors. Efficient chronic disease management hinges on regular ambulatory care and preemptive action. The application of intelligent computational models is showing promise as a key resource in the ongoing management of chronic diseases, particularly in forecasting disease trajectory and informing timely interventions. In this review, we explored a pioneering intelligent computational model by Diagnostic Robotics, an Israeli start-up company. This model uses data sourced from insurance claims to forecast the progression of heart failure. The goal of the model is to identify individuals at increased risk for heart failure, thus enabling interventions to be initiated early, mitigating the risk of disease worsening, and relieving the pressure on healthcare facilities, which will result in economic efficiencies.

December 2023
Niv Soffair MD, Eran Shostak MD, Ovadia Dagan MD, Orit Manor-Shulman MD, Yael Feinstein MD, Gabriel Amir MD, Georgy Frenkel MD, Amichai Rotstein MD, Merav Dvir-Orgad MD, Einat Birk MD, Joanne Yacobovich MD, Ofer Schiller MD

Background: Ventricular assist devices (VADs) play a critical and increasing role in treating end-stage heart failure in pediatric patients. A growing number of patients are supported by VADs as a bridge to heart transplantation. Experience with VADs in the pediatric population is limited, and experience in Israel has not been published.

Objectives: To describe this life-saving technology and our experience with VAD implantation in children with heart failure, including characteristics and outcomes.

Methods: We conducted a retrospective chart review of all patients who underwent VAD implantation at Schneider Children's Medical Center from 2018 to 2023.

Results: We analyzed results of 15 children who underwent VAD implantation. The youngest was 2.5 years old and weighed 11 kg at implantation. In eight patients, HeartMate 3, a continuous-flow device, was implanted. Seven patients received Berlin Heart, a pulsatile-flow device. Three children required biventricular support; 11 underwent heart transplants after a median duration of 169 days. Two patients died due to complications while awaiting a transplant; two were still on VAD support at the time of submission of this article. Successful VAD support was achieved in 86.6% of patients. In the last 5 years,79%  of our heart transplant patients received VAD support prior to transplant.

Conclusions: Circulatory assist devices are an excellent bridge to transplantation for pediatric patients reaching end-stage heart failure. VADs should be carefully selected, and implantation techniques tailored to patient's weight and diagnosis at a centralized pediatric cardiac transplantation center. Israeli healthcare providers should be cognizant of this therapeutic alternative.

October 2023
Samuel N. Heyman MD, Yuri Gorelik MD, Mogher Khamaisi MD PhD, Zaid Abassi PhD

Recent studies using propensity score matching have clearly indicated that contrast nephropathy following computed tomography occurs in hospitalized patients with advanced chronic kidney disease (eGFR < 30 ml/min/1.73 m2) and that this iatrogenic complication is likely underestimated because of concomitant renal functional recovery, unrelated to the imaging procedure. These findings should be considered regarding contrast-enhanced studies in such patients.

September 2023
Ivan Gur MD MPH MHA, Ronen Zalts MD, Monia Azzam MD, Khetam Hussein MD, Ami Neuberger MD, Eyal Fuchs MD

Background: At the beginning of the coronavirus disease 2019 (COVID-19) pandemic, many patients presented with acute hypoxemic respiratory failure, requiring ventilatory support. One treatment method was the addition of a reservoir mask to a high flow nasal cannula (HFNC) (dual oxygenation).

Objectives: To evaluate the clinical outcomes of combining reservoir mask on top of a high-flow nasal cannula.

Methods: A retrospective cohort of adult patients who were admitted due to COVID-19 during the first year of the pandemic to Rambam Health Care Campus. The primary endpoint was 30-day mortality. Secondary endpoints were incidence of invasive positive pressure ventilation initiation and admission to the intensive care unit (ICU). Patients who received positive pressure ventilation for reasons other than hypoxemic respiratory failure or who were transferred to another facility while still on HFNC were excluded.

Results: The final analysis included 333 patients; 166 were treated with dual oxygenation and 167 with HFNC only (controls). No significant differences in baseline characteristics were noted between the groups. The dual oxygenation group was slightly older (69.2 ± 14.8 years vs. 65.6 ± 15.5 years, P = 0.034). The 30-day mortality (24.1% vs. 36.5%, P = 0.013), rates of invasive positive pressure ventilation (47% vs. 59.3%, P = 0.024), and ICU admissions (41.6% vs. 52.7%, P = 0.042) were all significantly lower in the dual oxygenation group.

Conclusions: The addition of reservoir masks to HFNC may improve the oxygenation and overall prognosis in patients with severe hypoxemia due to COVID-19.

Avishay Elis MD, Ella Giladi MD, Ahmad Raiyan MD, Alaa Atamna MD

Background: Congestive heart failure (CHF) with reduced ejection fraction (HFrEF) or with preserved ejection fraction (HFpEF) is a common diagnosis in patients hospitalized in the department of internal medicine. Recently, the therapeutic regimens were updated, as the sodium-glucose cotransporter-2 (SGLT2) inhibitors became an integral part of the therapeutic regimen for either HFrEF or HFpEF.

Objectives: To define the demographic and clinical characteristics of CHF patients hospitalized in the department of medicine.

Methods: We conducted a retrospective cohort study that included all patients hospitalized in the departments of medicine at the Rabin Medical Center, Israel, between 2016 and 2019. Demographic and clinical background, in-hospital procedures, discharge regimens, and outcome parameters were evaluated according to HFrEF/HFpEF.

Results: The cohort included 4458 patients. The majority (97%) presented with a preexisting diagnosis, whereas HF was an active condition in only half of them. The rates of HFrEF/HFpEF were equal. In most cases, the trigger of the exacerbation could not be determined; however, infection was the most common cause. There were basic differences in the demography, clinical aspects, and therapeutic regimens at discharge between HFrEF and HFpEF. Both conditions were associated with high in hospital mortality (8%) and re-admissions rates (30 days [20%], 90 days [35%]) without any difference between them.

Conclusions: HFrEF/HFpEF patients differed by demographics and co-morbidities. They were equally represented among patients admitted to medical wards and had similar prognosis. For both diagnoses, hospitalization should be considered for updating therapeutic regimens, especially with SGLT2 inhibitors.

August 2023
Andre Keren MD, Rabea Asleh MD PhD MHA, Edo Y. Birati MD, Tuvia Ben Gal MD, Michael Arad MD

Recognizing myocarditis is a diagnostic and therapeutic challenge due to the heterogeneity of its clinical presentation and the wide range of etiologies. There is a lack of uniformity among position papers and guidelines from various professional societies regarding the definition and diagnostic workout, including recommendations for performing endomyocardial biopsy (EMB) and medical management, especially the use of immunosuppressive regimens [1-3]. Moreover, there is significant variability among medical centers in Israel in the diagnostic and therapeutic approaches to acute myocarditis. The purpose of this position paper is to present ways to standardize the management of acute myocarditis in Israel [4] by providing up-to-date definitions of the clinical categories of myocarditis, diagnostic criteria, and therapeutic approaches that correspond to the realities of our healthcare system.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime