• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 05.12.25

Search results


April 2006
Y. Mosesson and Y. Yarden

Polyubiquitylation of cellular proteins has long been recognized as a prelude to a degradative fate in proteasomes. In recent years, however, ubiquitin conjugation has emerged as a regulatory strategy of considerable versatility. Most notably, monoubiquitylation is attributed an intimate role in trafficking of membrane proteins between various cellular compartments. Diverse classes of transmembrane proteins from across the eukaryotic spectrum (e.g., epidermal growth factor-receptor and other receptor tyrosine kinases) become modified with monoubiquitin molecules. Monoubiquitylation of substrates, in turn, regulates both their endocytosis at the plasma membrane and sorting in endosomes for delivery to lysosomes or vacuoles. A mechanistic rationale lies in the identification of a growing list of ubiquitin-binding domains carried by a variety of endocytic adaptor proteins. Thus, ubiquitin-conjugated membrane proteins may form extensive contacts with the endocytic machinery. Further, ubiquitin-binding adaptors and other endocytic components are, likewise, often monoubiquitylated. In this case, ubiquitin conjugation may serve to enhance intermolecular avidity in cargo-bound endocytic complexes, or alternatively, to mediate timely inactivation of ubiquitin-binding adaptors. Interestingly, the ubiquitin/endocytosis interface is appropriated by pathogenic organisms, for instance, during budding of viruses from host-infected cells. Moreover, compromised ubiquitin-mediated transport of certain signaling receptors is associated with disease states, including oncogenic transformation.

 

 
 

August 2003
June 2002
Nurit Rosenberg, PhD, Ariella Zivelin, PhD, Angela Chetrit, PhD, Rima Dardik, PhD, Nurit Kornbrot, MSc, Dov Freimark, MD and Aida Inbal, MD

Background: Platelet adhesion and aggregation are mediated by specific platelet membrane glycoproteins GPIa/IIa, GPIba, and GPIIb/IIIa, and are essential steps in thrombus formation and development of acute myocardial infarction.

Objective: To evaluate the risks exerted by each of the following polymorphisms: HPA-1a/b in GPIIIa; 807C/T in GPIa; and HPA-2a/b, VNTR and Kozak C/T in GPIba in young males with AMI[1]..

Methods: We conducted a case-control study of 100 young males with first AMI before the age of 53 and 119 healthy controls of similar age. All subjects were tested for the above polymorphisms.

Results: The allele frequencies of each of the platelet polymorphism were not significantly different between the young men with AMI and the controls. Smoking alone was associated with a 9.97-fold risk, and the presence of at least one metabolic risk factor resulted in a 2.57-fold risk of AMI.

Conclusion: These results indicate that platelet glycoproteins polymorphisms are not an independent risk factor for AMI.






[1] AMI = acute myocardial infarction


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel