• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 05.12.25

Search results


May 2023
May-Tal Rofe-Shmuel MD, Michael Shapira MD, Gad Keren MD

Romidepsin is an intravenously administered antineoplastic agent, which acts by inhibiting histone deacetylases, thus preventing removal of acetyl groups from histones. The accrual of acetyl groups on histones causes cell cycle arrest and apoptotic cell death. It was approved for use in the United States in 2009 for treatment of refractory or relapsed cutaneous and peripheral T cell lymphomas [1-3].

The most common side effects are mild to moderate in severity and include nausea, vomiting, fatigue, fever, myelosuppression (e.g., anemia, neutropenia, thrombocytopenia), elevated liver enzymes, constipation, and rash. More severe adverse events can include marked neutropenia, thrombocytopenia, serious infections such as line sepsis, acute renal failure, tumor lysis syndrome, and cardiac arrhythmias [1].

December 2015
May-Tal Rofe MD, Ran Levi PhD, Einat Hertzberg-Bigelman MSc, Pavel Goryainov MSc, Rami Barashi MD, Jeremy Ben-Shoshan MD PhD, Gad Keren MD and Michal Entin-Meer PhD
 

Background: Chronic kidney disease (CKD) is a prevalent clinical condition affecting 15% of the general population. Cardiorenal syndrome (CRS) type 4 is characterized by an underlying CKD condition leading to impairment of cardiac function and increased risk for major cardiovascular events. To date, the mechanisms leading from CKD to CRS are not completely understood. In particular, it is unclear whether the pathological changes that occur in the heart in the setting of CKD involve enhanced cell death of cardiac cells.  


Objectives: To assess whether CKD may mediate loss of cardiac cells by apoptosis. 


Methods: We established rat models for CKD, acute myocardial infarction (acute MI), left ventricular dysfunction (LVD), and sham. We measured the cardiac-to-body weight as well as kidney-to-body weight ratios to validate that renal and cardiac hypertrophy occur as part of disease progression to CRS. Cardiac cells were then isolated and the percent of cell death was determined by flow cytometry following staining with annexin-FITC and propidium iodide. In addition, the levels of caspase-3-dependent apoptosis were determined by Western blot analysis using an anti-cleaved caspase-3 antibody. 


Results: CKD, as well as acute MI and LVD, resulted in significant cardiac hypertrophy. Nevertheless, unlike the increased levels of cell death observed in the acute MI group, in the CKD group, cardiac hypertrophy was not associated with induction of cell death of cardiac cells. Caspase-3 activity was even slightly reduced compared to sham-operated controls. 


Conclusions: Our data show that while CKD induces pathological changes in the heart, it does not induce cardiac cell death. 


 

 
June 2008
D. Sharif, G. Rofe, A. Sharif-Rasslan, E. Goldhammer, N. Makhoul, A. Shefer, A. Hassan, S. Rauchfleisch and U. Rosenschein

Background The temporal behavior of the coronary microcirculation in acute myocardial infarction may affect outcome. Diastolic deceleration time and early systolic flow reversal derived from coronary artery blood flow velocity patterns reflect microcirculatory function.

Objectives To assess left anterior descending coronary artery flow velocity patterns using Doppler transthoracic echocardiography after primary percutaneous coronary intervention, in patients with anterior AMI[1].

Methods Patterns of flow velocity patterns of the LAD[2] were obtained using transthoracic echocardiography-Doppler in 31 consecutive patients who presented with anterior AMI. Measurements were done at 6 hours, 36–48 hours, and 5 days after successful PPCI[3]. Measurements of DDT[4] and pressure half times (Pt½), as well as observation for ESFR[5] were performed.

Results In the first 2 days following PPCI, the average DDT, 600 ± 340 msec, were shorter than on day 5, 807 ± 332 msec (P < 0.012). FVP[6] in the first 2 days were dynamic and bidirectional: from short DDT (< 600 msec) to long DDT (> 600 msec) and vice versa. On day 5 most DDTs became longer. Pt½ at 6 hours was not different than at day 2 (174 ± 96 vs. 193 ± 99 msec, P = NS) and became longer on day 5 (235 ± 98 msec, p = 0.012). Bidirectional patterns were also observed in the ESFR in 6 patients (19%) at baseline, in 4 (13%) at 36 hours, and in 2 (6.5%) on day 5 after PPCI.






[1] AMI = acute myocardial infarction

[2] LAD = left anterior descending

[3] PPCI = primary percutaneous coronary intervention

[4] DDT = diastolic deceleration time

[5] ESFR = early systolic flow reversal  

[6] FVP = flow velocity pattern


Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel