• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 02.05.24

Search results


November 1999
Mordechai R Kramer MD, Victor Krivoruk MD PhD, Joseph Lebzelter PhD, Mili Liani BSc and Gershon Fink MD
Background: Hypoxemia is a common complication of chronic obstructive pulmonary disease and a major factor in patients’ prognosis and quality of life. The response to exercise has been evaluated by various means but no standardization has been accepted.

Objectives: To suggest a simple outpatient technique for evaluating the response of arterial oxygen saturation to exercise for use as a marker of disease severity.

Patients and methods: Ninety-six patients with various degrees of COPD1 were divided into three groups: mild (forced expiratory volume in 1 sec >65%), moderate (FEV12 between 50 and 65%), and severe (FEV1 <50%). Using continuous oximeter recording we measured oxygen saturation during 15 steps of climbing, and quantified  oxygen desaturation by measuring the “desaturation area”, defined as the area under the curve of oxygen saturation from the beginning of exercise through the lowest desaturarion point and until after recovery to the baseline level of oxygen percent saturation. Desaturation was correlated to spirometry, lung gas volumes, blood gas analysis, and 6 min walking distance.

Results A good correlation was found between severity of COPD and baseline SaO23, lowest SaO2, recovery time, and desaturation area.  A negative correlation was found between desaturation area and FEV1 (r=-0.65), FEV1/forced vital capacity (r=-0.58), residual volume to total lung capacity (r=0.52), and diffusing lung capacity for carbon monoxide (r=-0.52). In stepwise multiple regression analysis only FEV1 correlated significantly to desaturation area.  A good correlation was noted between 6 min walking distance and desaturation area with the 15 steps technique (r=0.56).

Conclusions: In patients with severe COPD, arterial hypoxemia during exercise can be assessed by simple 15 steps oximetry. This method can serve both as a marker for disease severity and to determine the need for oxygen supplementation.

_____________________________________ 

COPD = chronic obstructive pulmonary disease

FEV1 = forced expiratory volume in 1 sec

SaO2 = arterial oxygen saturation

October 1999
Shmuel Kivity MD, Amir Onn MD, Yoel Greif MD, Elizabeth Fireman PhD, Shmuel Pomeranz MD and Marcel Topilsky MD
 Background: Nedocromil sodium confers both acute and chronic protective effects in patients with bronchial asthma, the interactions of which are unknown.

Objective: To examine to what extent and for how long nedocromil sodium prevents exercise-induced asthma when given immediately before exertion compared to chronic administration.

Patients and Methods: Eighteen asthmatic patients were given 4 mg NS at 30 min or 3.5 hours before exertion. We compared the resultant effect with that of the same protocol measured after 2 and 4 weeks of continuous treatment with the drug.

Results: Nedocromil sodium decreased exercise-induced asthma similarly at both points when given acutely. Chronic treatment of up to 4 weeks did not improve this protective effect at either interval following the inhalation.

Conclusion: Nedocromil sodium most likely reaches its maximal effect on exercise-induced asthma upon the first administration, although treatment for longer than 4 weeks might be required to prove a chronic effect of the drug.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel