• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Sat, 26.07.25

Search results


June 2000
Paltiel Weiner MD, Joseph Waizman MD, Margalit Weiner PhD, Marinella Rabner MD, Rasmi Magadle MD and Doron Zamir MD

Background: Cigarette smoking is a major contributor to the risk of acute myocardial infarction and the subsequent morbidity and mortality. Physicians can play an important role in smoking cessation among patients with AMI because of their frequent contact with the patient during the event.

Objectives: To study the prevalence of smoking, age, localization of coronary occlusion, mortality and rate of smoking cessation in consecutive patients who were diagnosed with a first AMI in our center in 1989–93.

Methods: The study included 1,510 consecutive patients with first AMI: 973 men (512 smokers, 52.6%) and 537 women (215 smokers, 40%), whose mean age was 64.1±6.7 and 68.6±5.2 years respectively.

Results: The median age at the first AMI in non-smoking and smoking men differed significantly (70.4±6.8 vs. 56.6±6.1 years, P<0.001) while the difference in the women was smaller (70.4±6.9 vs. 66.8±7.2). The proportion of smokers/non-smokers among men was greater at a younger age and decreased proportionally with age. The overall mortality was 11.3% with a significant difference in mortality rate in the younger age groups between smokers and non-smokers (1% vs. 0% in the age group 31–40 years, P<0.05, and 6.1% vs. 0.8% in the 41–50 year age group, P<0.001). Only 62% of the smokers who survived the AMI declared that they had received anti-smoking advice from a physician during hospitalization. The cessation rate in this group was significantly higher than in smokers who had not been cautioned against smoking (56% vs. 18%).

Conclusions: Current smokers sustained their first AMI more than one decade earlier than non-smokers, and the younger smokers had a higher mortality rate. The majority of the smokers who received anti-smoking advice during their hospitalization for AMI quit smoking in the year following the acute event. 

__________________________________

 

AMI= acute myocardial infarction

Guillermo Ruiz-Irastorza, MD, PhD, Munther A. Khamashta, MD, MRCP, PhD and Graham R.V. Hughes, MD, FRCP
May 2000
Dan Miron MD, Raul Colodner MSc and Yoram Kenes PhD

Background: Two recent studies found that the prevalence of cryptosporidiosis among children in Israel was 3.4-7.4%.

Objectives: To assess the cumulative infection rate by testing immunoglobulin A and G seroprevalence for Cryptosporidium in children and adults in Israel.

Patients and Methods: The seroprevalence of IgA and IgG anti-Cryptosporidium antibodies was determined by an enzyme-linked immunosorbent assay procedure in a group of 163 healthy children and adults.

Results: The overall seroprevalence rates for IgG, IgA, both IgA and IgG, and any immunoglobulin were 12.6%, 23%, 30% and 65.6% respectively. Half the children under the age of 12 years were already infected, with seroprevalence increasing to 95.6% in those over age 13 (P<0.05). Seropositivity for IgG or IgA did not significantly increase with age.

Conclusions: These results indicate that a large percentage of healthy children and adults in northern Israel have been infected with Cryptosporidium, and at early ages.

Perla Werner PhD and Iris Vered MD

Background: Osteoporosis is the most common human bone disease. It affects millions of persons throughout the world and its prevalence will increase as the population ages worldwide.

Objective: To assess Israeli physicians' attitudes and knowledge with regard to management of osteoporosis.

Methods: A questionnaire was mailed to 1,900 Israeli physicians concerning their attitudes to the management of osteoporosis, their prescribing habits, and their knowledge on the pharmacological treatment of the disease.

Results: Replies were received from 19% of the physicians. The respondents encouraged physical activity and cessation of smoking for all women, and prescribed estrogen replacement as the main treatment for 50-year-old women. A relatively low level of knowledge was found regarding the adequate dosage of several of the pharmacological treatments.

Conclusions: The findings of the present study stress the need to provide clear guidelines and to extend physicians' knowledge regarding the management of osteoporosis.

Josef Ben-Ari MD, Imad R. Makhoul MD DSc, Raymond J. Dorio MD, Sue Buckley MSc,David Warburton MD and Sharyn M. Walker

Background: Exposure of newborn animals to high concentrations of oxygen leads to diffuse alveolar damage similar to that seen in bronchopulmonary dysplasia in human infants. Therefore, neonatal rats are a suitable practical model of hyperoxic lung damage in human infants.

Objective: To determine the involvement of tumor necrosis factor-alpha and interleukin-6 in lung injury in neonatal rats exposed to 100% O2 concentration.

Methods: A randomized controlled study was designed in which litters of term Sprague-Dawley rat pups were assigned to experimental or control groups. The pups in the experimental group were placed in 100% O2 from birth for 9 days, while the control pups were placed in room air. Twelve to 15 pups from each group were sacrificed on day 1, 3, 6, 9 and 13 after birth for bronchoalveolar lavage collection and lung histologic study. The bronchoalveolar lavage fluid was assayed for TNFα and IL-6.

Results: Newborn rats exposed to 100% O2 for the first 9 days of life showed severe pulmonary edema and hypercellularity on days 1 and 3, which then improved to nearly complete resolution on days 6 and 9. Pulmonary TNFα was produced early on O2 exposure (day 3) and pulmonary IL-6 later (days 6 and 9).

Conclusions: Hyperoxia induces sequential production of pulmonary TNFα and IL-6, which corresponds to the severity of the pathological findings and the known inflammatory and anti-inflammatory role of these cytokines.

________________________________

 

TNFα= tumor necrosis factor-alpha

IL-6= interleukin-6

April 2000
Ella Zeltzer MD, Jacques Bernheim MD, Ze’ev Korzets MB BSc,, Doron Zeeli PhD, Mauro Rathaus MD, Yoseph A. Mekori MD and Rami Hershkoviz MD

Background: Cell-mediated immunity is impaired in uremia. Cell-matrix interactions of immune cells such as CD4+T lymphocytes with extracellular matrix are an important requirement for an intact immune response. The adherence of CD4+T cells of healthy subjects (normal T cells) to ECM components is inhibited in the presence of uremic serum. Such decreased adhesive capacity is also found in T cells of dialysis patients. Various chemokines and cytokines affect the attachment of CD4+T cells to ECM.

Objective: To evaluate chemokine (MIP-1β and RANTES) and tumor necrosis factor α-induced adhesion of CD4+T cells to ECM in a uremic milieu.

Methods: We examined adhesion of normal CD4+T cells (resting and activated) to intact ECM in response to soluble or bound chemokines (MIP-1β and RANTES) and to TNF-α following incubation in uremic versus normal serum. Thereafter, we evaluated the adhesion of resting CD4+T cells from dialysis patients in a similar fashion and compared it to that obtained from a healthy control group.

Results: Addition of uremic serum diminished soluble and anchored chemokine-induced attachment of normal resting and activated CD4+T cells to ECM compared to a normal milieu (a peak response of 10–11% vs. 24–29% for soluble chemokines, P<0.001; 12–13% vs. 37–39% for bound chemokines on resting cells, P<0.01; and 18–20% vs. 45–47% for bound chemokines on activated cells, P<0.02). The same pattern of response was noted following stimulation with immobilized TNF-α (7 vs. 12% for resting cells, P<0.05; 17 vs. 51% for activated cells, P<0.01).  Adherence of dialysis patients’ cells to ECM following stimulation with both bound chemokines was reduced compared to control T cells (15–17% vs. 25–32%, P<0.0000). In contrast, adherence following stimulation by TNF-α was of equal magnitude.

Conclusions: Abnormal adhesive capacity of T lymphocytes to ECM in uremia may, in part, be related to a diminished response to MIP-1β, RANTES and TNF-α. However, whereas reduced adhesion to chemokines was present in both normal CD4+T cells in a uremic environment and in dialysis patients’ T cells, TNF-α-induced adhesion was found to be inhibited only in normal cells in a uremic milieu.

____________________________

ECM = extracellular matrix

TNF-α = tumor necrosis factor-a

chondrocyte transplantation, joint cartilage, articular surface, bioengineering, cartilage repair, dror robinson, hana ash, david aviezer, gabriel agar, nahum halperin, zvi nevo, robinson, ash, aviezer, agar, halperin, nevo

Background: Articular cartilage is incapable of undergoing self-repair since chondrocytes lose their mitotic ability as early as the first year of life. Defects in articular cartilage, especially in weight-bearing joints, will predictably deteriorate toward osteoarthritis.  No method has been found to prevent this deterioration. Drilling of the subchondral bone can lead to fibrocartilage formation and temporary repair that slowly degrades. Animal experiments indicate that introducing proliferating chondrocytes such as cultured articular chondrocytes can reliably reconstruct joint defects.

Objectives: To describe our clinical experience in culturing and transplanting autologous chondrocytes. 

Methods: Biopsies were obtained from 10 patients, aged 18–45, undergoing a routine arthroscopy in which a cartilage defect was identified with indications for cartilage transplantation. The biopsies were further processed to establish chondrocyte cultures. ACT was performed in 8 of the 10 patients because of persistent symptoms for at least 2 months post-arthroscopy. All patients (6 men and 2 women) had a grade IV cartilage defect in the medial or lateral femoral condyle, and three had a defect in the trochlear region as well. Biopsies were removed from the lateral rim of the superior aspect of the femur, and cells were cultured in a clean room. Following a 2 order of magnitude expansion, cells were implanted under a periosteal flap.

Results: The eight patients implanted with autologous cells were followed for 6 months to 5 years (average 1 year). Complaints of giving-way, effusion and joint locking resolved in all patients, and pain as assessed by the visual analogue score was reduced by an average of 50%. Follow-up magnetic resonance imaging studies in all patients revealed that the defects were filled with tissue having similar signal characteristics to cartilage.

Conclusions: Chondrocyte implantation is a procedure capable of restoring normal articular cartilage in cases with isolated joint defects. Pain can be predictably reduced, while joint locking and effusion are eliminated. The effect on osteoarthritis progression in humans has not yet been elucidated.

__________________________________

ACT = autologous chondrocyte transplantation

Arnon Blum, MD, Subhi Jawabreh, MD, Marina Gumanovsky, MD and Soboh Soboh, MD
February 2000
Dan Nemet, MD, Baruch Wolach, MD, Joanne Yacobovich, MD and Alon Eliakim, MD
Ben Zion Garty MD, Yehudit Monselise PhD and Menahem Nitzan MD

Background: Inflammation is a major component in the pathogenesis of asthma. CD14 is an endotoxin (lipopolysaccharide) receptor, and is expressed mainly on monocytes and macrophages. Binding of LPS to CD14 activates the monocyte or macrophage and causes the release of different cytokines.  The soluble form of CD14 is present in serum, and its concentration increases in several clinical conditions, including infections, auto-immune disorders, allergic disorders, and lung diseases.  The possible role of CD14/sCD14 in asthma has been investigated in a few adult patients only.

Objectives: To measure serum concentrations of sCD14 in children with status asthmaticus.

Methods: We compared serum concentration of sCD14 in 10 children with status asthmaticus measured within 24 hours of admission and after recovery from the acute episode.

Results: Levels of sCD14 were significantly higher during acute asthma attacks than at recovery.

Conclusions: The elevated serum levels of sCD14 during status asthmaticus may be the result of the activation of monocytes, macrophages or other cells.  The influence of medications on serum sCD14 cannot be ruled out.  The possible use of sCD14 as a marker of lung inflammation in asthma warrants further investigation. 

________________________________

LPS= lipopolysaccharide

SCD14= soluble form of CD14

 

Michael Schwarz MD, Gadi Horev MD, Enrique Freud MD, Nizza Ziv MD, Amir Blumenfeld MD, Ran Steinberg MD and Liora Kornreich MD

Background: Multiple organ injury in children is an increasingly frequent phenomenon in the modern emergency room. Adrenal hemorrhage associated with this type of trauma has received little attention in the past.

Objectives: Using computed tomography, we sought to determine the rate and nature of adrenal gland injury in children following blunt abdominal trauma due to motor vehicular accident.

Methods: A total of 121 children with blunt abdominal trauma were examined and total body CT was performed in cases of multi-organ trauma or severe neurological injury.

Results: Of all the children who presented with blunt abdominal trauma over a 51 month period, 6 (4.95%) had adrenal hemorrhage. In all cases only the right adrenal gland was affected. Coincidental injury to the chest and other abdominal organs was noted in 66.7% and 50% of patients, respectively.

Conclusions: Traumatic adrenal injury in the pediatric population may be more common than previously suspected. Widespread application of the more sophisticated imaging modalities available today will improve the detection of damage to the smaller organs in major collision injuries and will help in directing attention to the mechanism of trauma. 

Ram Silfen MD, Michal Chemo-Lotan MD, Abraham Amir MD and Daniel J. Hauben MD

Background: Burn trauma occurs mostly in young children. Burn injury in the pediatric age group has multiple-aspect sequelae.

Objectives: To characterize the profile of the injured pediatric burn patient, thus targeting the most vulnerable pediatric group.

Methods: Between 1 January and 31 December 1996, a total of 9,235 pediatric patients were admitted for various traumatic injuries (burns, lacerations, fractures, etc.) to the Emergency Medicine Department of Schneider Children’s Medical Center. We conducted a retrospective study of the patients’ charts, including demographic data, which were stored in a computerized database, for statistical evaluation. The characteristics of pediatric burn patients were examined and compared with other pediatric trauma patients.

Results: Of the total patient population, 282 (3.1%) suffered from burns (37% females, 63% males). The most frequent burn injury was scald burn (58%). The pediatric group that was most exposed to burns was 13–18 month old males.

Conclusions: Having identified the high risk group among the pediatric burn patients, we suggest that prevention programs be directed towards this group in order to reduce further risk of burn injury.

Matti Erlichman MD, Ruth Litt MD, Zachi Grossman MD, Ernesto Kahan MD MPH and IPROS Network

Background: Streptococcal pharyngotonsillitis remains a common illness in children and can lead to serious complications if left untreated.

Objective: To evaluate the diagnostic and management approach of a sample of primary care physicians in the largest sick fund in Israel to streptococcal pharyngotonsillitis in children.

Methods: A questionnaire was mailed to all physicians who treat children and are employed by the General Health Services (Kupat Holim Klalit) in the Jerusalem District. The questionnaire included data on demographics, practice type and size, and availability of throat culture and rapid strep test; as well as a description of three hypothetical cases followed by questions relating to their diagnosis and treatment.

Results: Of the 188 eligible physicians, 118 (62.5%) responded, including 65 of 89 pediatricians (73%) and 53 of 99 family and general practitioners (53.5%). Fifty-six physicians (47.4%) had more than 18 years experience, and 82 (70%) completed specialization in Israel.  Mean practice size was 950 patients. Fifty-three physicians (43%) worked in Kupat Holim community clinics, 25 (21%) worked independently in private clinics, and 40 (34%) did both. A total of 91 (77%) had access to laboratory facilities for daily throat culture. The time it took for the results to arrive was 48 to 72 hours.  For the three clinical scenarios, 90% of the physicians accurately evaluated case A, a 1-year-old with viral pharyngotonsillitis, and 100 (85%) correctly diagnosed case C, a 7-year-old with streptococcal infection.  As expected, opinions were divided on case B, a 3-year-old child with uncertain diagnosis.  Accordingly, 75 (65.3%) physicians did not recommend treatment for case A, compared to 109 (92.5%) for case C.  For case B, 22 (19%) said they would always treat, 43 (36%) would sometimes treat, and 35 (30%) would await the result of the throat culture.  For 104 (88%) physicians the antibiotic of choice for case C was penicillin, while only 9 (7.5%) chose amoxicillin. However, the recommended dosage regimens varied from 250 to 500 mg per dose, and from two to four doses daily.  For case C, 110 physicians (93%) chose a 10 day duration of treatment.

Conclusions: The primary care physicians in the sample (pediatricians, general practitioners and family physicians) accurately diagnosed viral and streptococcal pharyngotonsillitis. However, there was a lack of uniformity regarding its management in general, and the dosage regimen for penicillin in particular.
 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime