• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Fri, 05.12.25

Search results


March 2006
O. Caspi and L. Gepstein

The adult human heart has limited regenerative capacity and, therefore, functional restoration of the damaged heart presents a great challenge. Despite the progress achieved in the pharmacological and surgical treatment of degenerative myocardial diseases, they are still considered a major cause of morbidity and mortality in the western world. Repopulation of the damaged heart with cardiomyocytes represents a novel conceptual therapeutic paradigm but is hampered by the lack of sources for human cardiomyocytes. The recent derivation of pluripotent human embryonic stem cell lines may provide a solution for this cell sourcing problem. This review will focus on the derivation of the hESC[1] lines, their mechanism of self-renewal, and their differentiation to cardiomyocytes. The possible signals and cues involved in the commitment and early differentiation of cardiomyocytes in this model will be discussed as well as the molecular, structural and electrophysiologic characteristics of the generated hESC-derived cardiomyocytes. Finally, the hurdles and challenges toward fully harnessing the potential clinical applications of these unique cells will be described.

 






[1] hESC = human embryonic stem cells


January 2006
B. Dekel

Regenerative medicine concerns the development of cells, tissues and organs for the purpose of restoring function through transplantation.

August 2002
Bella Bielorai, MD, Hana Golan, MD, Gideon Rechavi, MD, PhD and Amos Toren, MD
April 2002
Tomas Kozak, MD and Ivan Rychlik, MD

Intractable forms of autoimmune diseases follow a rapid course, with a significantly shortened life expectancy sometimes comparable to that of malignant diseases. Immunoablative therapy, including high dose cytotoxic agents and hematopoietic autologous stem cell rescue, was recently introduced as an aggressive approach to treat autoimmune diseases that have a rapid course and are resistant to conventional therapy. The most frequent indication for this type of treatment is multiple sclerosis, seconded by systemic sclerosis. The results of immunoablative treatment with documented responses in both diseases are encouraging. The data are mature enough to begin comparative randomized studies of immunoablative versus conventional treatment to validate the benefit of the aggressive approach. A randomized trial involving SSc[1] was recently launched (ASTIS) and a trial involving MS[2] is under preparation. Considerably less experience with immunoablative treatment has been gained in systemic lupus erythematosus, rheumatoid arthritis, and other disorders with an autoimmune pathophysiology. Autologous hematopoietic stem cell transplantation in humans offers more long-lasting immunosuppression than reeducation of lymphocytes. In fact, allogeneic transplantation may replace the whole immune system. However, this attractive approach is still associated with considerable morbidity and mortality and is not yet justified for treatment of automimmune diseases. Non-myeloablative allogeneic transplantation and sub-myeloblative high dose cyclophosphamide without stem cell support are alternative approaches that could be explored in pilot studies.

_______________________________


[1] SSc = systemic sclerosis


[2] MS = multiple sclerosis


January 2002
Philip J. Hashkes, MD, MSc, Orit Friedland, MD and Yosef Uziel, MD, MSc
February 2001
Donato Alarcon-Segovoia, MD, MS, PhD

The future promises good news for the treatment of systemic lupus erythematosus, some of which can already be foreseen. Increased knowledge on genes that participate in the predis­position, pathogenesis, pharmacogenetics of, and protection against this disease may permit intervention at this level. Also, better understanding about the role of sex hormones has allowed trials of weak androgens or prolactin inhibitors. New immunomodulators or i mmunosuppresors may enable more precise treatment at the immunoregulatory level, and greater knowledge on the disturbance of circuits has already provided hints and even allowed trials of anti-interleukin-10 antibodies, an IL-10 decreasing agent, tolerance-induction strategies or intervention at the level of T cell co-stimulation, as well as immune ablation with subsequent stem cell transplantation. Autoantibodies can be removed, controlled by means of anti­idiotypes, which are blocked from reaching their target antigen or uncoupled from the tissues they have reached. All these treatment strategies will gradually become decanted in order to achieve the optimal treatment of SEE, which may turn out to be its cure.

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel