Vague abdominal pain is a very common and non-specific complaint. Sometimes it may be the only symptom of metastatic malignancy. We present the case of a 68 year old patient with dull abdominal pain and metastatic neuroendocrine malignancy. We provide a detailed description of the imaging modalities and treatment approaches used for this kind of tumor.

Patient Description

A 68 year old man presented to the family physician with complaints of vague abdominal pain of a few months duration, without nausea, vomiting, weakness, weight loss or change in bowel habits. Meticulous physical examination did not reveal any significant findings.

An upper gastrointestinal endoscopy showed normal esophageal, gastric and duodenal mucosa. Abdominal computed tomography [Figure A] demonstrated a pancreatic mass and multiple liver lesions. Percutaneous biopsy specimen from the liver lesions showed solid tumor cells arranged in nests [Figure B]. Each nest comprised large cells with eosinophilic cytoplasm and nuclei without nucleoli. Tumor cells were moderately allomorphic and stained positively with chromogranin and S-100. These morphologic and immunohistochemical features suggested a tumor of neuroendocrine origin. According to the radiologic features the tumor could be regarded as a non-functional neuroendocrine tumor of the pancreas.

Comment

The term “non-functional” or “non-functioning” is a misnomer in the case of neuroendocrine tumors because of the presence of hormone secretion. Tumors considered to be “non-functional” pancreatic neuroendocrine tumors almost always secrete chromatogranins (as in our case) but none is responsible for a specific syndrome.

Pancreatic neuroendocrine tumors constitute a subset of gastrointestinal neuroendocrine tumors that are derived from the widespread neuroendocrine system of the gastrointestinal tract, which is composed of hormone and amine-producing cells. Pancreatic neuroendocrine tumors include insulinomas, gastrinomas, VIPomas, and other rare tumors. Most are slow-growing tumors but proportions are aggressive and there is no correlation between histologic features and biological behavior, because only invasion and metastases establish malignancy. Non-functional pancreatic neuroendocrine tumors comprise approximately 15–25% of all islet tumors and are the third most common islet cell tumor after insulinoma and gastrinoma. They may be sporadic or part of the MEN type-I syndrome.

Patients with non-functional pancreatic neuroendocrine tumor usually present late in their disease course with invasive tumors and hepatic metastases. The symptoms are entirely due to tumor invasion or pressure on the adjacent structures. The most common symptoms
are abdominal pain, jaundice, weight loss, fatigue, or bleeding [1].

The imaging modality for a large non-functional pancreatic neuroendocrine tumors is dynamic contrast-enhanced computed tomography, which usually reveals a solid mass (sometimes with calcifications) isoattenuated to the normal pancreatic parenchyma that enhances post-contrast injection. Most pancreatic adenocarcinomas are hypodense to the surrounding normal parenchyma post-contrast injection on dynamic contrast-enhanced CT [2]. A very sensitive imaging modality for metastatic disease is somatostatin receptor scintigraphy (SRS, OctreoScan®).

A biochemical assay that could help in making the diagnosis of non-functioning pancreatic neuroendocrine tumors is measuring plasma chromogranin A and additional markers such as pancreatic polypeptide [3]. There are two approaches to the treatment of metastatic pancreatic neuroendocrine tumors. The first is the “wait-and-see” strategy that can often be adopted in an asymptomatic patient with a well-differentiated tumor. Possible indications for treatment according to this approach are progressive disease defined as a 25% increase in targeted lesions or the appearance of new disease. A thorough clinical and radiologic follow-up should be done every 3 months. Of course, the appearance of disease-related symptoms is an indication for treatment. The second approach is early treatment in all patients. No prospective randomized study has compared these two approaches [4]. Treatment options for metastatic disease include surgical resection, biotherapy (somatostatin analogues, interferon), and targeted radiotherapy with somatostatin analogues coupled with radionuclides that embolize the target lesions [5].

Our patient was followed for 1 year without treatment. An evaluation of the tumor 1 year later by abdominal CT scan showed no change in the pancreatic tumor size, but enlargement of the liver metastases [Figure C]. Evaluation with somatostatin receptor scintigraphy showed multiple areas of uptake of the tracer in both lobes of the liver, which represent the known multiple metastases with no other sites of uptake, except for the thyroid which might represent other thyroid disease. Due to the worsening of the abdominal pain, treatment with somatostatin analogues was chosen.

References

Correspondence: Dr. L. Michael, Dept. of Medicine B, Sheba Medical Center, Tel Hashomer 52621, Israel.
Phone: (972-3) 635-2538
Email: dirbalak@yahoo.com

If you want your children to turn out well, spend twice as much time with them, and half as much money

Abigail Van Buren (1918-), American advice columnist

Capsule

The two faces of interleukin 10 in human infectious diseases

Resolution of infections depends on the host’s ability to mount a protective immune response. However, an exacerbated response to infections may result in deleterious lesions. Consequently, immunoregulatory mechanisms are needed to control immune response and prevent infection-associated lesions. Interleukin 10 (IL-10) may be a major regulator of innate and adaptive immunity in vitro and in animals, but its role in human infections is still unclear. Review of the published work by Mege et al. from France reveals wide involvement of IL-10 in two major features of infectious diseases. On one hand, IL-10 prevents the development of immunopathologic lesions that result from exacerbated protective immune response to acute and chronic infections. On the other hand, it is critically involved in the persistence of bacteria and viruses by interfering with innate and adaptive protective immunity. Moreover, infections induce the expansion of IL-10-producing regulatory cells that are involved in protection against allergic diseases.

Lancet 2006;6:557
Eitan Israeli