Inducible Clindamycin Resistance in Beta-Hemolytic Streptococci and *Streptococcus pneumoniae*

Orli Megged MD, Marc Assous MD, Gila Weinberg and Yechiel Schlesinger MD

Pediatric Infectious Diseases Unit and Clinical Microbiology Laboratory, Shaare Zedek Medical Center, affiliated with Hadassah-Hebrew University Medical School, Jerusalem, Israel

ABSTRACT: Background: Resistance to macrolides in beta-hemolytic streptococci and *Streptococcus pneumoniae* arises primarily due to Erm(B) or Mef(A). Erm(B) typically confers high level resistance to macrolides, lincosamides and streptogramin B (MLS\(_B\) phenotype), whereas Mef(A) confers low level resistance to macrolides only (M phenotype). Objectives: To investigate the incidence of macrolide resistance mechanisms in isolates of beta-hemolytic streptococci and pneumococci in Israel, with particular emphasis on inducible MLS\(_B\) phenotype. Methods: We collected 316 clinical isolates of streptococci during May–August 2010. Erythromycin resistance mechanism was determined by the erythromycin-clindamycin double disk diffusion method. Results: Erythromycin and clindamycin resistance rates were 19.4% and 13.4% for *S. pneumoniae*, 4.7% and 1.6% for Group A Streptococcus (GAS), 17% and 17% for Group B Streptococcus (GBS), and 38.8% and 27.8% for Group G Streptococcus (GGS) respectively. The most common resistance mechanism for all streptococci was constitutive MLS\(_B\) (cMLS\(_B\)). Inducible MLS\(_B\) (iMLS\(_B\)) mechanism was found in 3% of all strains and represented 25% of resistance mechanisms. Conclusions: The prevalence of macrolide resistance and the distribution of resistance mechanisms differ among beta-hemolytic streptococci and *S. pneumoniae*, with GBS, GGS and *S. pneumoniae* showing the highest resistance rate. Macrolide or lincosamide cannot be empirically used for severe streptococcal infections before strains are proved to be susceptible. Continuous surveillance of erythromycin and clindamycin resistance patterns among streptococci is needed.

KEY WORDS: clindamycin, erythromycin, beta-hemolytic Streptococcus, *Streptococcus pneumoniae,* iMLS\(_B\)
Resistance of various streptococci to macrolides has been constantly rising. In this study, we found a high rate of erythromycin and clindamycin resistance rates in pneumococci, GBS and GGS, with a lower resistance rate in GAS. Current data on macrolide and clindamycin resistance patterns for streptococci are limited.

Resistance of *Streptococcus pyogenes* to macrolides varies between different locations, ranging from 2% to 19% [3,9,10]. The relative proportion of iMLS\textsubscript{B} phenotype also differs between various places and ranges from 2% to 51% [11,12]. *Streptococcus agalactiae* (GBS) is frequently carried in the normal vaginal flora. It is an important cause of neonatal infection but also causes significant morbidity in adults. GBS resistance rates to erythromycin and clindamycin differ among different regions of the world, being relatively low in northern Europe [13], high in southern Europe [14], and highest in the Far East [15,16]. We found 17% erythromycin resistance in our population, with 8% having iMLS\textsubscript{B} phenotype. This finding has immediate clinical implica-
tions regarding prevention of perinatal GBS disease. Recent Center of Disease Control guidelines specifically require that the D-test be performed in all isolates in order to choose the optimal prophylactic antibiotic regimen. For clindamycin-resistant isolates or those with unknown clindamycin susceptibility, vancomycin is recommended [17]. Our findings, showing a relatively high rate of inducible clindamycin resistance among GBS isolates, support adoption of these recommendations.

Resistance to macrolides among *Streptococcus pneumoniae*, a common cause of community-acquired pneumonia and otitis media, has been increasing [18]. A large U.S. study that examined the rate of macrolide resistance among middle ear isolates of *S. pneumoniae* found that 37% of the strains were non-susceptible to erythromycin. Erythromycin resistance increased from 15% in 1994–95 to 56% in 1999–2000. Seventy-five percent of the strains remained susceptible to clindamycin [19]. Inducible clindamycin resistance has not been frequently evaluated for erythromycin-resistant pneumococci. A few studies did not find iMLSB phenotype in *S. pneumoniae*, even in places with a high rate of erythromycin resistance [20], while others found a lower rate of macrolide resistance but 2%–38% of resistant strains with iMLSB phenotype [17,19,21,22].

In our study, GGS, GBS and *S. pneumoniae* showed the highest resistance rates to both erythromycin and clindamycin. The high rate of resistance in GGS strains is in agreement with a previous study [23], but the reason for this finding is yet to be determined.

The incidence of macrolide resistance in streptococci has risen sharply in various regions of the world and may be due to the increased use of long-acting macrolides. This might also be the reason for the increase in resistance rates of streptococci to macrolides in Israel in recent years [24], and we should thus expect an increase in clindamycin resistance rates as well.

CONCLUSIONS

The iMLSB phenotype accounted for 25% of the erythromycin-resistant streptococci in this study. We therefore conclude that it is important to perform double disk-diffusion tests according to recommendations of the Clinical and Laboratory Standards Institute [25] to verify clindamycin resistance in a routine clinical diagnostic laboratory for all body fluid samples. Macrolides or clindamycin cannot be empirically used for severe streptococcal infections before strains are proven to be susceptible. Continuous surveillance of erythromycin and clindamycin resistance patterns among streptococci is needed to provide guidance for empiric therapy in cases of suspected streptococcal infections where β-lactams cannot be used.

Corresponding author:

Dr. O. Megged
Pediatric Infectious Diseases Unit, Sharee Zedek Medical Center, P.O. Box 3235, Jerusalem 94342, Israel
Phone: (972-2) 666-6340
Fax: (972-2) 666-6840
email: orlinmegged@szmc.org.il

References

Capsule

MR1 presents microbial vitamin B metabolites to MAIT cells

Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Kjer-Nielsen and co-workers show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, the authors characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, they show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, these data suggest that MAIT cells use these metabolites to detect microbial infection.

Nature 2012; doi:10.1038/nature11605
Eitan Israeli

Capsule

Phosphorylation of NLRC4 is critical for inflammasome activation

NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis. Qu et al. use knock-in mice expressing NLRC4 with a carboxy-terminal 3xFlag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlr4−/− macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCδ) as a candidate NLRC4 kinase. Recombinant PKCδ phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCδ from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd−/− macrophages exhibited greatly attenuated caspase-1 activation and IL-1β secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.

Nature 2012; 490: 539
Eitan Israeli
Targeted Therapy with Low Doses of 131I-MIBG is Effective for Disease Palliation in Highly Refractory Neuroblastoma

Myriam Weyl Ben-Arush MD, Ayelet Barak MD, Raquel Bar-Deroma DSc, Shifra Ash MD, Gal Goldstein MD, Hanna Golan MD, Haim Houri MD, Dalia Waldman MD, Neta Nevo MD, Rachel Bar Shalom MD, Alison Bemiger RN, Alexander Nevelsky MSc, Amos Toren MD PhD, Isaac Yaniv MD and Abraham Kuten MD

1Department of Pediatric Hematology Oncology, Meyer Children’s Hospital; 2Division of Oncology, and 3Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel

ABSTRACT: Background: Palliative treatment of refractory neuroblastoma remains a significant clinical problem.

Objectives: To retrospectively determine the clinical response to 131I-MIBG therapy at low doses in patients with refractory neuroblastoma.

Methods: We performed a retrospective chart review of 10 patients with neuroblastoma treated with 131I-MIBG at Rambam Health Care Campus from 1994 to 2012. Clinical data, number of 131I-MIBG courses delivered, toxicities, and clinical responses were reviewed. MIBG scan was performed after each course.

Results: Twenty-one courses of 131I-MIBG were delivered to 10 patients (3 girls, 7 boys). Their mean age was 3.8 years (range 1.5–6 years). All patients received several protocols of chemotherapy including the high dose form. Three patients received three courses of 131I-MIBG with a minimum of 6 weeks between each course, five patients received two courses, and two patients received only one course. An objective response to the first course was obtained in nine patients and to the second course in six of eight, and in three children who underwent the third course the pain decreased. One patient has no evidence of disease, four are alive with disease, and five died of the disease. No unanticipated toxicities were observed.

Conclusions: Low dose 131I-MIBG is an effective and relatively non-toxic treatment in neuroblastoma disease palliation. Rapid and reproducible pain relief with 131I-MIBG was obtained in most of the children. Treatment with systemic radiotherapy in the form of low dose 131I-MIBG was easy to perform and effective in cases of disseminated neuroblastoma, demonstrating that this primary therapy can be used for palliative purposes.

KEY WORDS: neuroblastoma, palliation, 131I-MIBG, radiotherapy

The choice of treatment for neuroblastoma depends on the stage of the disease, the age of the child, and biological molecular prognostic factors [1]. Despite a high initial response rate to the combination of chemotherapy, surgery, radiotherapy and immunotherapy, a large number of patients will have a recurrence of their disease before or after completion of therapy [2]. Interacting with the characteristic features of neuroblastoma, specific targeting of radiopharmaceuticals may be achieved via the metabolic route (MIBG), via receptor binding (peptides), or via the immunological route (antibodies) [1]. The active uptake mechanism in the cell membrane and neurosecretory storage granules in the cytoplasm of neuroblastoma are responsible for the uptake and retention of 131I-MIBG, respectively. Although the radiopharmaceutical may be released from the granules, reuptake through this specific mechanism maintains prolonged intracellular concentration [3]. Cumulative results of 131I-MIBG scintigraphy reported in the literature indicate that more than 90% of neuroblastomas concentrate 131I-MIBG [4]; the uptake of 131I-MIBG is tissue specific. This enables the detection of metastases regardless of their localization. Moreover, the prolonged intracellular concentration of 131I-MIBG at tumor sites, in contrast to normal tissue, has led to the use of this radiopharmaceutical for therapy [5]. 131I-MIBG has been used with success for radionuclide therapy of neuroblastoma since 1984 [6]. A few authors have published their experiences with higher dose 131I-MIBG and demonstrated its value as a palliative agent in advanced refractory neuroblastoma [6-8]; however, thrombocytopenia limits repeated use.

Acceptable pain control can be achieved with analgesics in most children, but some patients with skeletal involvement required an alternative method of pain control during the terminal phase of their disease. We report here our experience with low dose 131I-MIBG for disease palliation in refractory neuroblastoma.

PATIENTS AND METHODS [Table 1]

Patients were eligible to receive more than one course of 131I-MIBG if they showed objective clinical improvement and generally decreased pain. Information collected for the study included gender, age at diagnosis, stage of disease, response