Expansion of CD28⁻CD27⁻NKG2D⁺ Effector Memory T cells and Predominant Th1-type Response during Febrile Attacks in Tumor Necrosis Factor-Associated Periodic Syndrome*

Julia U. Holle MD, Dorin Capraru MD, Elena Csernok PhD, Wolfgang L. Gross MD and Peter Lamprecht MD

Department of Rheumatology, University Hospital of Schleswig-Holstein, Campus Lübeck, and Rheumaklinik Bad Bramstedt, Lübeck, Germany

Key words: CD28⁻ effector memory T cell, genetically determined fever syndrome, Th1-type, tumor necrosis factor-alpha, TRAPS

Tumor necrosis factor-associated fever syndrome is an autosomal dominant disorder caused by mutations of the TNFRSF 1A gene encoding the 55 kDa TNF receptor (p55 TNF-R). Consequently, cleavage of the p55 TNF-R ectodomain upon cellular activation is impaired with diminished shedding of the potentially antagonistic soluble receptor. This results in dysregulated inflammatory responses and excess of TNFα and provides an in vivo model of the consequences of excess TNF. Studying the T cell phenotype of a patient suffering from TRAPS, we show an expansion of CD28⁻CD27⁻NKG2D⁺ effector memory T cells and a predominant Th-1 response during febrile attacks. Application of the human soluble p75 TNFα receptor fusion protein etanercept (2 x 25 mg/week subcutaneously) induced complete remission of all symptoms.

Patient Description

A 66 year old Caucasian woman was admitted to our department because of recurrent febrile attacks, oligoarthritis, myalgias and migratory erythematous macules since early adulthood. She had two sisters in Russia who were suffering from similar symptoms. Treatment with various immunosuppressants (gold, colchicine, methotrexate, azathioprine, leflunomide) was not effective.

Recurrent self-resolving fever and a positive family history was suspicious of a hereditary periodic fever syndrome. DNA analysis of the TNF receptor superfamily (TNFRSF) 1A gene disclosed a R92Q mutation. A skin biopsy showed small vessel vasculitis and panniculitis. Treatment with the TNFα-inhibiting human soluble p75 TNFα receptor fusion protein etanercept (2 x 25 mg/week subcutaneously) induced complete remission of all symptoms.

Comment

TRAPS is an autosomal dominant disorder characterized by self-limiting recurrent febrile acute attacks variably associated with serosal, synovial and/or cutaneous inflammation. A typical complication is AA-amyloidosis, which leads to nephritic syndrome and renal failure [1]. TRAPS is caused by mutations in the TNFRSF 1A gene encoding the 55 kDa TNF receptor (p55 TNF-R) [1]. Several mutations have been found to disrupt conserved disulfide bonds. Impaired cleavage of the p55 TNF-R ectodomain upon cellular activation with diminished shedding of the potentially antagonistic soluble receptor results in dysregulated inflammatory responses and excess of TNFα. The R92Q mutation does not affect cysteine residues of the p55 TNF-R. Of note, receptor shedding also occurs in healthy individuals, but soluble p55 TNF-R levels fail to increase during febrile attacks in patients with the R92Q mutation [2].

TNFα down-regulates CD28 expression on CD4 T cells in vitro [3]. Moreover, several autoimmune disorders such as rheumatoid arthritis, ankylosing spondylitis and Wegener’s granulomatosis, in which TNFα plays an important pathophysiologic role, are characterized by the expansion of circulating effector memory T cells lacking co-stimulatory CD28 expression [4].

CD4⁺ and CD8⁺ T cell subsets were analyzed for CD28, CD27, NKG2D, HLA-DR and intracytoplasmic interferon-gamma, and interleukins 12, 10, 5, 4, and 2 expression by flow cytometric analysis. Four-color flow cytometric analysis was performed using a FACSCalibur™ flow cytometer and data acquired with CellQuest Pro™ software (BD, Heidelberg, Germany). Soluble p55 TNF receptor I (sTNF-R1) was quantified in serum by enzyme-linked immunosorbent assay (QuantiKine, R&D Systems, Germany).

An expansion of CD4⁺CD28⁻ and CD8⁺CD28⁻ T cells was detected compared with healthy controls (n=5). About half of the CD4⁺CD28⁻ T cells also lacked co-stimulatory CD27 expression. The activating NKG2D receptor was strongly up-regulated and preferentially expressed on the expanded CD4⁺CD28⁻ T cell fraction. CD8⁺CD28⁻ T cells predominantly lacked CD27 expression. The phenotype of CD8⁺NKG2D⁺ T cells was significantly shifted towards the expanded CD28⁻ cell fraction. HLA-DR (activation marker) expression was up-regulated both on CD4⁺ and CD8⁺ T cells with preferential expression on the CD28⁻ T cell fractions (Figure). CD4⁺ and CD8⁺ T cells displayed

* Presented at the EULAR meeting, Vienna, 1 June 2005.

The first two authors contributed equally to this study.
low intracytoplasmatic IFNγ, IL-12, IL-10, IL-5, IL-4, and IL-2 expression during afebrile periods. Activation of CD4+ and CD8+ T cells with PMA and ionomycin resulted in prominent intracytoplasmic IFNγ, IL-12, IL-2, and IL-10 expression in both T cell subsets. Low production of TNFα, IFNγ, IL-10, IL-5, IL-4 and IL-2 was also detected in periods between fever attacks by CBA (TNFα: 0 pg/ml each; IL-10: 2.9 pg/ml, normal < 7.8 pg/ml; IL-4: 3.3 pg/ml, normal < 0.25 pg/ml). During febrile attacks there was a strong IFNγ response (113.9 pg/ml, normal < 15.6 pg/ml) and a less prominent TNFα (17.9 pg/ml, normal < 15.6 pg/ml), IL-10 (20.8 pg/ml) and IL-4 (39.9 pg/ml) response. Serial detection of the sTNF-RI with ELISA during afebrile and febrile periods disclosed values with slightly above the normal range (2183 and 2294 pg/ml respectively, normal 749–1966 pg/ml) with no apparent increase during febrile attacks (2171 pg/ml).

TNFα has been reported to down-regulate CD28 expression on CD4+ T cells in vitro [3]. Since regulation of TNFα function is impaired in TRAPS, it provides a human in vivo model of biologic consequences of excess TNFα. We demonstrated expansion of CD28− cell fractions both within the CD4+ and CD8+ T cell compartments in TRAPS. The expanded CD28− T cell fraction is phenotypically reminiscent of so-called late differentiated or effector memory T cells, which often also lack CD28 expression. The activating NKG2D receptor is constitutively expressed on human CD8+ T cells. It has been hypothesized that anomalous NKG2D expression on CD4+CD28− effector memory T cells could facilitate autoimmune and chronic inflammatory reactions [5]. In line with other authors [2], we found no increases in soluble p55 TNFRI levels during afebrile and febrile periods of the disease in this patient with a R92Q mutation. Instead, sTNF-
RI levels were slightly above normal. Aksentijevich et al. [2] pointed out that the failure of sTNF-RI levels to increase with febrile episodes is suggestive of an in vivo functional abnormality of TNF-RI cleavage.

Acknowledgments. Supported by grant SFB367/A8 (P.L., W.L.G.) from the German Research Society (Deutsche Forschungsgemeinschaft/DFG), Wegener’s Granulomatosis Association, Kansas City, USA (P.L., W.L.G.), grant No. 02.2 from the Verein zur Förderung der Erforschung und Bekämpfung rheumatischer Erkrankungen Bad Bramstedt e.V., Germany (P.L.), and a grant from Innovationsfonds Schleswig-Holstein (J.U.H., P.L.).

References

Correspondence: Dr. J.U. Holle, Dept. of Rheumatology, University Hospital of Schleswig-Holstein, Campus Lübeck, and Rheumaklinik Bad Bramstedt, Ratzeburger Allee 160, 23538 Lübeck, Germany. Phone: (49-451) 500-2368 Fax: (49-451) 500-3650 email: hollejulia@hotmail.com

Capsule

About IgG specificity

Different classes of antibody (the immunoglobulins; IgA, IgD, IgE, IgG, and IgM) perform divergent functions within the immune system. IgG has also evolved further into subclasses that vary considerably in their potency in particular types of immune responses. Each IgG subclass possesses a range of binding affinities for the different inhibitory and activating receptors that engage the constant Fc region of the antibody molecule. Nimmerjahn and Ravetch used this observation to construct antibodies bearing the same antigenic specificity combined with the subclass-specific portions of Fc. The ability of these hybrid antibodies to mediate their immunologic effects in vivo could be predicted by the strength with which the Fc portion bound the different activating or inhibitory Fc receptor (FcR). Thus, the specificity and strength of FcR binding is a central means by which IgG subclasses determine their dominance in a particular immune response.

Science 2005;310:1510
Eitan Israeli

Capsule

Antiangiogenesis therapy

An exciting class of cancer drugs acts by disrupting the growth of new blood vessels that supply solid tumors with oxygen and other essential nutrients. Because antiangiogenic therapies target genetically stable endothelial cells rather than genetically adaptable tumor cells, it had been hypothesized that tumors would be unlikely to develop resistance to these drugs. However, the results of clinical trials reveal that tumors do in fact eventually escape the growth-inhibitory effects of these drugs, although the underlying mechanisms of resistance have been unclear. Casanovas et al. show that resistance can arise when tumors exploit a redundancy in the signaling pathways that drive angiogenesis; that is, when a drug incapacitates one pathway, tumors are able to reactivate angiogenesis through a second pathway. In a mouse model of pancreatic cancer, blocking vascular endothelial growth factor (VEGF) signaling with an antibody to VEGF receptor 2 (VEGFR2) produced a temporary arrest of tumor angiogenesis and tumor growth. Subsequently, a second wave of angiogenesis, driven by fibroblast growth factors (FGFs), led to resumption of tumor growth. Inhibiting FGF signaling during this second stage effectively blunted tumor recovery from hypoxia, and the authors propose that maximal therapeutic benefit may come from the use of drug combinations that target multiple angiogenic pathways.

Cancer Cell 2005;8:299
Eitan Israeli