Electrophysiological Testing and Ablation in an Asymptomatic Child with Wolff-Parkinson-White Syndrome

Bernard Belhassen MD1 and Michael Glikson MD2

Departments of Cardiology, 1Tel Aviv Sourasky Medical Center, Tel Aviv, and 2Sheba Medical Center, Tel Hashomer, both affiliated with Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel

KEY WORDS: Wolff-Parkinson-White syndrome, children, sudden death, electrophysiological study

For Editorial see page 701

The issue of treatment (ablation versus conservative management) for asymptomatic subjects with an electrocardiographic pattern of Wolff-Parkinson-White syndrome has long been debated. Based on an estimated very low annual risk of mortality during the lifetime of individuals with WPW (0.1%) [1], the most recent 2003 guidelines concerning asymptomatic patients [2] state: “The potential value of electrophysiologic testing in identifying high-risk patients who may benefit from catheter ablation must be balanced against the approximately 2% risk of a major complication associated with catheter ablation.” In 2009, Klein and group [1] declared that they do not support changing the current guidelines. In the present report, we opted for “aggressive” management in a child using EP testing and ablation, as supported by recent studies from Pappone’s group [3,4].

PATIENT DESCRIPTION

A 12 year old boy playing in a volleyball team was sent to undergo an electrocardiogram. The tracing showed a pattern of WPW consistent with a left posterior accessory pathway [Figure A]. He had no history of palpitations or syncope. His cardiac examination and echocardiogram were normal. During exercise testing, the preexcitation pattern was still present, albeit to a smaller degree, at a rate of 180/min. Twenty-four hour Holter monitoring showed a permanent WPW pattern without any arrhythmia. After obtaining the parents’ consent, an EP study was performed under general anesthesia.

Electrode catheters were placed in the coronary sinus, His bundle area and right ventricular apex. Incremental ventricular pacing was first performed showing a 1:1 conduction over the AP at a rate up to 200/min. During incremental coronary sinus pacing, there was a 1:1 conduction over the AP at a rate of 200/min preceding the occurrence of atrial fibrillation associated with a very fast ventricular rate (up to 320/min, cycle length 188 msec) [Figure B]. Shortly after, ventricular fibrillation [Figure B] occurred that required direct current shock. Transseptal catheterization was then performed. Acute successful ablation of the AP was achieved by delivering a single radiofrequency pulse at the left posterior AP = accessory pathway

Twelve lead ECG: [A] Sinus rhythm with a QRS pattern compatible with a left posterior preexcitation before ablation. [B] Ventricular fibrillation initiated by rapid atrial fibrillation over the accessory pathway (first 6 QRS complexes). [C] Sinus rhythm after successful radiofrequency ablation of the left posterior accessory pathway.
area of the mitral valve annulus [Figure C]. The patient was discharged home the following day. He was instructed to resume his sporting activities 1 month later after ECG confirmed the non-recurrence of preexcitation.

Four months after ablation, the ECG showed recurrent conduction over the AP. A repeat ablation procedure was performed using a retrograde arterial approach without any complication. The AP was ablated at the second radiofrequency pulse. Six months later, the ECG did not show ventricular preexcitation.

COMMENT

In contrast with the results of prior studies suggesting that the prognosis of asymptomatic children with WPW is usually good [5], several recent studies by Pappone and coworkers [3,4] have shown that in these patients the risk of life-threatening arrhythmias and/or sudden death during long follow-up periods is not negligible. In a large prospective study of 184 asymptomatic children aged 8–12 years undergoing EP study and monitored during a median follow-up of 57 months [4], they found that 19 (10.3%) exhibited rapid preexcited atrial fibrillation (mean ventricular rate 280/min) during follow-up. The arrhythmia led to aborted cardiac arrest with documented ventricular fibrillation in three patients and syncope in three others. The arrhythmic events were frequent in the initial presenting symptom. Importantly, an effective refractory period of the AP < 240 msec (i.e., conducting at a rate > 250/min) was, along with the presence of multiple APs, an important risk factor associated with increased occurrence of life-threatening events [4].

In our patient the antegrade effective refractory period of the AP was very short (188 msec). In addition, sustained atrial fibrillation could be easily induced during moderate atrial pacing (200/min), suggesting a marked propensity for future occurrence of this arrhythmia. Finally, the occurrence of ventricular fibrillation during EP testing, as observed in our patient, is very rare in asymptomatic WPW patients and could represent an additional risk factor of future life-threatening events. Based on our present case and the research of Pappone et al. [3,4], we recommend that EP testing be conducted to select asymptomatic children (> 8 years) with WPW syndrome who may benefit from prophylactic catheter ablation. Such a procedure can offer lifetime benefits that obviate the minimal risk of the procedure [3] when performed in experienced EP centers.

References

Capsule

T⁺₁₇ **cells cause trouble in MS**

Multiple sclerosis (MS) results from inappropriate immune responses against antigens in the central nervous system (CNS). CD4⁺ T cells that make interleukin-17 (T₁₇ cells) are a major contributor to the development and pathogenesis of MS. Two recent studies now reveal how T₁₇ cells are regulated in the CNS and how they might contribute to disease. Using a mouse model of MS, Hao et al. (J Exp Med 2010; 209: 1907) show that natural killer (NK) cells residing in the CNS play a critical role in suppressing T₁₇ cell responses. NK cells do not act directly on the T₁₇ cells, however. Instead, they kill microglia, which present antigens and provide cytokine cues to direct T₁₇ cell differentiation in the CNS. Siffrin et al (Immunity 2010; 33: 424) focus on how T₁₇ cells contribute to disease pathogenesis, also in a mouse model of MS. They show, through use of cell transfer experiments and intravital imaging, that T₁₇ cells (but not other CD4⁺ helper cell subsets) form long-lived contacts with neurons in the CNS of diseased mice. Neurons interacting with T₁₇ cells exhibited elevated amounts of intracellular calcium, which is indicative of neuronal toxicity, and in vitro, T₁₇ cells induced neuronal cell death. Together, these studies underscore the importance of T₁₇ cells in MS pathology and suggest that these cells, and NK cells, may be potential targets for therapeutic intervention.

Eitan Israeli

“Boredom is a vital problem for the moralist, since at least half of the sins of mankind are caused by the fear of it”

Bertrand Russell (1872-1970), British philosopher, mathematician, author, and Nobel laureate