Validity of Self-Reported Weight and Height among 13–14 Year Old Schoolchildren in Israel

Yifat Linhart MD MPH1,2, Orly Romano-Zelekha MSc3 and Tamy Shohat MD MPH2,3

1Tel Aviv District Health Office, Ministry of Health, Tel Aviv, Israel
2Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
3Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Israel

ABSTRACT: Background: Data regarding the validity of self-reported weight and height in adolescents are conflicting. Objectives: To evaluate the validity of self-reported weight and height among 13–14 year old schoolchildren. Methods: We conducted a cross-sectional study of 517 schoolchildren aged 13–14 years and compared self-reported and measured weight and height by gender, population group, parental education and crowdedness. Results: Females under-reported their weight on average by 0.79 ± 5.46 kg (P = 0.03), resulting in underestimation of the body mass index with borderline significance (mean difference 0.28 ± 2.26 kg/m², P = 0.06). Males over-reported their height on average by 0.75 ± 5.81 cm (P = 0.03). Children from less crowded homes (<1 person per room) overestimated their height more than children from more crowded homes, resulting in a significant underestimation of BMI (mean difference between reported BMI and measured values was 0.30 ± 2.36 kg/m², P = 0.04). Measured BMI was a significant predictor of the difference between self-reported and measured BMI, adjusted for gender, population group, parents’ education, and crowdedness (β = -0.3, P < 0.0001). As a result of this reporting bias, only 54.9% of children with overweight and obesity (BMI ≥ 85th percentile) were classified correctly, while 6.3% of children were wrongly classified as overweight and obese. The largest difference in BMI was observed in obese females (4.40 ± 4.34) followed by overweight females (2.18 ± 1.95) and underweight females (-1.38 ± 1.75). Similar findings were observed for males, where the largest difference was found among obese males (2.83 ± 3.44). Conclusions: Studies based on self-reported weight and height in adolescents may be biased. Attempts should be made to correct this bias, based on the available data for each population.

KEY WORDS: body mass index, weight, height, validity, schoolchildren

RESULTS

Self-reported weight and height are common epidemiologic parameters that are used as an alternative to direct measurements both in adults and adolescents. Conflicting results were reported from studies conducted in adolescents. Some found under-reporting of weight and over-reporting of height [1,2], while others found that both height and weight were under-reported [3,4]. The validity of self-reported weight and height in adolescents has not been assessed in Israel. The aim of the present study was to assess the validity of these parameters among 8th grade schoolchildren in Israel.

PATIENTS AND METHODS

The Israel Center for Disease Control, in collaboration with the Ministry of Education, conducted a national study in 2003 to evaluate the prevalence of asthma in a representative sample of 8th grade schoolchildren in Israel [5]. We collected information on children’s height and weight in 11 randomly selected schools. All children were measured and weighed by the school nurses. Body mass index was calculated by dividing weight in kilograms by height (m²). BMI percentile was determined using a standard growth chart published and developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Disease Prevention and Health Promotion, Center for Disease Control in 2000 [6]. Self-reported and measured weight, height and calculated BMI were compared by gender, population group, parental education, and crowdedness (defined as the number of persons per room) as an indicator of socioeconomic level. Population groups were “Jews and others” (“others” include non-Arab Christians) and Arabs (Moslems, Christians, Druze and Bedouins). We excluded from the analysis questionnaires where the differences between self-reported and measured height and weight were larger than 4 standard deviations from the mean differences as reported before [7].
since the differences between self-reported and measured height and weight were larger than 4 SD from the mean differences. Analysis of responders and non-responders revealed that parents’ education was in general lower in non-responders compared with responders \((P = 0.03)\). In addition, compliance of Arab schoolchildren was better than of Jewish schoolchildren \((P < 0.0001)\). Females underestimated their weight on average by \(-0.79 \pm 5.46 \text{ kg} \ (P = 0.03)\), resulting in underestimation of the BMI \((\text{mean difference} -0.28 \pm 2.26 \text{ kg/m}^2, P = 0.06)\). Males overestimated their height on average by \(0.75 \pm 5.81 \text{ cm} \ (P = 0.03)\), and their weight by \(0.60 \pm 6.91 \text{ kg} \ (P = 0.15)\); There were no significant changes in reported versus measured BMI \((\text{mean difference} 0.04 \pm 2.39 \text{ kg/m}^2, P = 0.8)\). Significant correlations were observed between the reported and measured height and weight in both genders (Pearson’s correlation coefficients ranged between 0.76 and 0.84 for all parameters, in males and females). Children in families where one parent had \(\leq 12\) years of education and the other \(> 12\) years significantly underestimated their weight, on average, by \(-0.89 \pm 4.57 \text{ kg} \ (P = 0.04)\). This resulted in underestimation of BMI by an average of \(-0.31 \pm 1.70 \text{ kg/m}^2 \ (P = 0.05)\). Correlations between self-reported and measured parameters were lower in children of parents with low educational level \((\leq 12\) years) compared to parents with a higher educational level. Children from less crowded homes \((\leq 1 \text{ person per room})\) significantly overestimated their height \((\text{mean difference} 0.72 \pm 5.65 \text{ cm}, P = 0.04)\), resulting in a significant underestimation of BMI \((\text{mean difference} -0.30 \pm 2.36 \text{ kg/m}^2, P = 0.04)\). An overestimation, albeit not statistically significant, of weight was observed in children from more crowded homes \((0.45 \pm 5.25 \text{ kg}, P = 0.22)\). Population group differences between self-reported and measured weight and height were not statistically significant. Overestimation of height was on average \(0.3 \text{ cm}\) among Jews and others and \(0.5 \text{ cm}\) among Arabs. Correlations between self-reported and measured parameters were higher among Jews and others compared with Arabs. Measured BMI was a significant predictor of the difference between self-reported and measured BMI, adjusted for gender, population group, parents’ education, and crowedness \((\beta = -0.3, P < 0.0001)\). The largest difference between means of self-reported and measured BMI was observed in obese females \((4.40 \pm 4.34 \text{ kg/m}^2)\) followed by overweight females \((2.18 \pm 1.95 \text{ kg/m}^2)\) and underweight females \((-1.38 \pm 1.75 \text{ kg/m}^2)\). Similar findings were observed for males, where obese males \((2.83 \pm 3.44 \text{ kg/m}^2)\) demonstrated the largest difference among males. Significant differences between mean differences were observed between most of the BMI percentile groups in females except between overweight vs. obese and underweight vs. normal weight females \((P < 0.008\) for other groups). In males, significant differences were observed between obese and underweight males and between obese and normal weight males \((P < 0.008)\). Based on self-reported weight and height, 7.3% of females were overweight and 2.6% were obese [Figure 1]. Based on measured weight and height 10.3% were overweight and 3.5% were obese. In males, reported overweight was 12.1% and measured overweight was 8.9%, while obesity was 5.3% (self-reported) and 8.9% (measured). These differences were not significantly different. As a result of this reporting bias only 54.9% of children with overweight and obesity \((\text{BMI} \geq 85\text{th percentile})\) were classified correctly, while 63.6% with normal BMI or underweight were classified as overweight/obese. The sensitivity of self-reported weight and height for being overweight/obese \((\text{BMI} \geq 85\text{th percentile})\) was 50% in females and 58% in males. The specificity was 96.5% for females and 91.3% for males, the positive predictive value 69.6% and 59.2% for females and males, respectively, and the negative predictive value 92.3% for females and 90.9% for males.

Discussion

In the present study BMI based on self-reported weight and height was slightly underestimated in females, but not in males. The degree of bias correlated with the BMI categories. The sensitivity of self-reported weight and height for predicting overweight and/or obesity \((\text{BMI} \geq 85\text{th percentile})\) was low. High correlations were found in the present study between self-reported and measured weight, height and BMI in females and males; however, high correlations do not necessarily indicate valid results, as previously reported [8-10]. Although there were some differences between responders and non-responders in parents’ education and population group, these parameters were not associated with the dependent variable and therefore did not bias the results significantly.

In conclusion, self-reported weight and height in adolescents can be misclassified, especially in certain subgroups, resulting in bias estimates of overweight and obesity. This should be considered when analysing data from large self-reported surveys. Some of the results in the present study did not reach statistical significance possibly due to the small sample size. We recommend that this study be repeated in a larger population group in Israel.
Elucidating the chromosome 9 association with AS; CARD9 is a candidate gene

Ankylosing spondylitis (AS) is polygenic with contributions from the immunologically relevant genes HLA-B*27, ERAPI and IL23R. A recent genome-wide association screen (GWAS) identified associations (P = 0.005) with the non-synonymous single-nucleotide polymorphisms (nsSNPs), rs4077515 and rs3812571, in caspase recruitment domain-containing protein 9 (CARD9) and small nuclear RNA-activating complex polypeptide 4 (SNAPC4) on chromosome 9q that had previously been linked to AS. Pointon et al. replicated these associations in a study of 730 AS patients compared with 2879 historic disease controls [rs4077515, P = 0.0004, odds ratio (OR) 1.2, 95% confidence interval (CI) 1.1–1.4; rs3812571, P = 0.0003, OR 1.2, 95% CI 1.1–1.4]. Meta-analysis revealed strong associations of both SNPs with AS, rs4077515, P = 0.000005, OR 1.2, 95% CI 1.1–1.3 and rs3812571, P = 0.000006, OR 1.2, 95% CI 1.1–1.3. The researchers then typed 1604 AS cases and 1020 controls for 13 tagging SNPs; 6 showed at least nominal association, 5 of which were in CARD9. We imputed genotypes for 13 additional SNPs but none was more strongly associated with AS than the tagging SNPs. Finally, interrogation of an mRNA expression database revealed that the SNPs most strongly associated with AS (or in strong linkage disequilibrium) were those most associated with CARD9 expression. CARD9 is a plausible candidate for AS given its central role in the innate immune response.

Genes Immun 2010; 11: 490
Eitan Israeli

Circadian clock regulates blood lipids levels

Circadian regulation of metabolism is emerging as a major homeostatic mechanism. A recent study indicates that a protein that regulates lipid levels in the blood is also under the control of the body clock. Xiaoyue Pan and co-workers examined the role of clock genes – the master regulators of circadian rhythmicity – in the control of a molecule important for keeping the blood levels of triglycerides in check: microsomal triglyceride transfer protein (MTP). MTP acts as chaperone of triglyceride-rich apolipoprotein B lipoproteins; in the absence of MTP, the plasma concentrations of triglycerides decrease and vice versa. The authors used Clockmt/mt mice, which express a dominant-negative form of the protein, and found constant hypertriglyceridemia and high levels of MTP. This effect was due to the activation of the MTP promoter and reduced levels of the MTP repressor Shp. Indeed, whereas rhythmic variations in Shp and MTP levels were inversely correlated, these variations were abrogated in Clockmt/mt mice. Furthermore, expression of Shp reduced hypertriglyceridemia in Clockmt/mt mice.

Cell Metab 2010; 12: 174
Eitan Israeli

“Nobody made a greater mistake than he who did nothing because he could do only a little”
Edmund Burke (1729-1797), Irish statesman, author, orator, political theorist and philosopher