Objective Measures of Attention-Deficit/Hyperactivity Disorder: A Pilot Study

Itai Berger MD¹ and Gil Goldzweig PhD²

¹Neuro-Pediatric Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
²Clinical Psychology Section, School of Behavioral Sciences, Academic College Tel Aviv-Jaffa, Tel Aviv, Israel

ABSTRACT: Background: Most aspects of attention-deficit/hyperactivity disorder diagnosis rely on subjective judgment. Computerized continuous performance tests are designed to improve the validity of the process but are controversial due to low odds ratios. There is a need to find more definitive measures of assessment.

Objectives: To test the validity and reliability of a new tool, a computerized continuous performance functions test, which includes a multi-task approach designed to achieve a higher odds ratio of assessment.

Methods: We applied this test to 58 children aged 6–12 years: 45 were diagnosed as ADHD and 13 non-ADHD children served as a control group.

Results: The CPF test was able to differentiate between non-ADHD and ADHD children. CPF test results were more accurate than other continuous performance tests. The results were statistically significant in all test parameters, confirming the test's validity and reliability.

Conclusions: The CPF test includes a combination of tasks based on an algorithm designed to test several domains of attention. In this pilot study the CPF test was found to be a valid and reliable tool for the diagnosis of ADHD in children. This test might increase the diagnostic utility of computerized tests. But the clinical utility of different CPTs was found to be low and is the subject of much controversy due to inconsistent validity results [9,11,12]. Most studies do not provide support for the validity of the CPT as an attention measure, and they failed to demonstrate the discriminant validity of any CPT score regardless of the behavior rating scales used [9,13].

In this pilot study we introduce a computerized test designed to diagnose ADHD. The test is termed a Continuous Performance Functions test since it includes a combination of tasks and is based on an algorithm testing several domains of attention in order to increase its diagnostic utility. The aim of this pilot study was to test the validity and reliability of the CPF test in the diagnosis of ADHD in children, compared to the 'gold standard'.

KEY WORDS: attention-deficit/hyperactivity disorder, diagnosis, Continuous Performance Functions Test

SUBJECTS AND METHODS

The study was conducted in an outpatient clinic of a neuro-pediatric unit in a tertiary care university hospital. The study...
population comprised 58 children aged 6–12 years; 13 of them served as a control group: 7 (54%) boys and 6 (46%) girls with a mean age of 10.50 years (standard deviation 1.81). These children were healthy and did not show any symptoms or signs of ADHD, according to their parents’ rating scales and reports. The study group included 45 children: 32 (71%) boys and 13 (29%) girls with a mean age of 9.86 years (SD 1.89). ADHD diagnosis was established by a certified pediatric neurologist based on DSM-IV-TR criteria [7] after an interview with the child and parents; a neurologic examination, the completion of DSM-based questionnaires by parents and teachers, and neuropsychologic evaluation confirmed the diagnosis. The children in the study group also completed a CPT: either TOVA or Conners [15,16]. All 58 children completed the CPF test while not under the influence of any medication. All the children in the study were drug naïve.

Inclusion criteria were: children aged 6–12 years, diagnosed as ADHD and otherwise healthy. Exclusion criteria were: mental retardation, a chronic condition other than ADHD, chronic use of medications, and children diagnosed with depression, anxiety or psychosis. Since we work in a tertiary care center in Jerusalem our population is extremely variable and multicultural and includes a spectrum of families with regard to potentially confounding factors correlated with the diagnosis of ADHD.

Ethical approval was obtained from the Internal Review Board (Helsinki Committee) of Hadassah-Hebrew University Medical Center. The study was registered in the NIH (NCT00646464 – ClinicalTrials.gov). All children agreed to participate in the study and all parents signed an informed consent form.

CPF TEST DESCRIPTION
The system includes software only, compatible with any computer with an internet browser and flash player installed (developed by Neurotech Solutions Ltd, Kfar Mordechai, Israel). A set of target and non-target stimuli (other than letters or numbers) was shown in the middle of the computer screen. The child was instructed to respond (as quickly as possible) to the "target" stimuli by pressing the keyboard’s space bar only, and only once. The child was instructed to avoid responding to all other stimuli or pressing any other key. The CPF test is based on an algorithm designed to test several domains of attention by including a multi-task approach. The test contains 8 levels, each one 114 seconds long. Every level consists of the same measurable elements (target and non-target) shown in the same sequence. At each sub-level, the duration of each element presentation changes in the same manner (3 sec, 1 sec, 0.5 sec). Every level has a different set of disturbances: two levels contain visual disturbances, two levels contain audio disturbances, and two levels contain a combination of both visual and audio disturbances. In each set of two levels, there are low and high grades of disturbances. Between each two disturbances, there is a 0.5 second gap ("void time"). Since the CPF test measures reaction time with millisecond precision it can demonstrate children who are "slow but accurate responders." There are several age-appropriate difficulty levels, so the test can be applied to different age groups. The duration of the study is 15.2 minutes.

ANALYSIS
The user’s actions/inactions are measured and analyzed according to the elements shown on the screen. The system counts the number of times the spacebar is pressed or not pressed at each level in relation to the shown elements. It also registers the time lapse from appearance of the element until the spacebar is pressed and if other computer keys (not the spacebar) are pressed. In order to find a performance pattern the system can also compare the grades and presses among the different levels.

OUTPUT
After the test was over a conclusion panel (report) was shown. The report automatically presented a list of measurements, as table and graphs, based on the individual's performance pattern [Figures 1 and 2]. In this study, four parameters were evaluated:

- **Attention (A):** counting response to target stimuli = “good press” which measured sustained attention.
- **Hyperactivity (H):** number of times that the child presses any key (if more than once) = press commission, which measured response inhibition.
- **Impulsivity (I):** counting “bad press” = a response to non-target stimuli, measured distractability.

Figure 1. CPF test results of a child from the control (non-ADHD) group

Sample No 1: Healthy child (control group) - no ADHD

<table>
<thead>
<tr>
<th>Levels (time)</th>
<th>Performance (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impulsivity</td>
</tr>
<tr>
<td>2</td>
<td>Attention</td>
</tr>
<tr>
<td>3</td>
<td>Hyperactivity</td>
</tr>
</tbody>
</table>

SD = standard deviation
Figure 2. CPF test results of a child from the study (ADHD) group who is mainly inattentive

Table 1. True positive CPT results in the study group

<table>
<thead>
<tr>
<th>Test</th>
<th>ADHD indication</th>
<th>Confidence interval 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower limit</td>
</tr>
<tr>
<td>Conners</td>
<td>13 (52%)</td>
<td>31%</td>
</tr>
<tr>
<td>TOVA</td>
<td>12 (75%)</td>
<td>51%</td>
</tr>
<tr>
<td>Conners+TOVA</td>
<td>29 (64%)</td>
<td>50%</td>
</tr>
<tr>
<td>CPF test</td>
<td>45 (100%)</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION
Since ADHD children may experience significant functional problems, early recognition and management can redirect the educational, medical and psychosocial development of most children [9,17,18]. Several different “involved” genes were recognized as well as different types of attention domains – visual, auditory, spatial, integrated, sustained, covert and overt, among others [3-5]. In the absence of an
available "biological marker" that would support a diagnostic test, clinicians are asked to continue to use clinical criteria and rating scales [2,9]. The major difficulty is that judgment and experience are needed to appreciate what is "usual" for an individual child. The impact of subjectivity on symptom assessment is considerable [19]. That is the reason for the quest for objective laboratory parameters of ADHD, which hold the promise to be cost effective, are relatively free of bias, provide immediate information, are easily administered, rely only on the individual being evaluated, and can be administered in a variety of settings [10]. This explains why CPT, although not recommended by the American Academy of Pediatrics, was reported to be the most popular clinic-based computerized tool to diagnose ADHD [20].

Studies of the CPT's validity had mixed results [9,11]. These tests measure the number of correctly detected stimuli as well as response time [9,11,15,16]. The diagnosis is based mainly on visual performance and usually ignores other measures of attention [9,14,15]. This might explain why the available tests suffer from relatively high false negative errors and low overall utility. As much as one-third of the children who fulfill DSM-IV-TR criteria for ADHD can escape detection when tested by CPT [9,11]. This study tried to overcome the technical barriers by using a test that was developed while taking into consideration the recommendations of previous studies. Therefore, the CPF test includes a multi-task approach designed to objectively assess several domains of attention and is intended for clinical use. All this would have failed had the test not been valid and reliable in differentiating between children with and without ADHD. Therefore, the main objective of this study was to test this ability.

The results of this pilot study showed that the CPF test is valid for the diagnosis of ADHD in a population of children aged 6–12. The differences in performance in all tested parameters between the study and control groups were statistically significant.

The CPF test also proved to be reliable for ADHD diagnosis, and more sensitive than CPT in this small group of children. In this pilot study, the CPT had a relatively high false negative rate of 36%, which concurs with the results of previous studies [9,11,13].

This study has several limitations: there is a clear dichotomy between the selected ADHD and control group. This is because the study objective was to test validity and reliability of an unknown diagnostic tool. This also explains the fact that the ADHD group was without severe comorbid features. We assume that this should be the first but not last step towards a robust validation of the CPF test. We also assume that if the differences are significant in a relatively small group, it might be significant in larger cohorts, but this point requires further research. There is a need to retest the results of this study in larger cohorts, build a solid normal range of performance in the general population to better discriminate between ADHD and the comorbidities associated with the disorder, and test validity and reliability among other populations (adolescents, adults, preschoolers and children with and without different comorbidities).

This study might be a helpful step towards more accurate and objective diagnosis since it points to the need for additional information on the reliability and validity of ADHD diagnostic methods. Further research is needed to develop better modalities of assessment that can be applied practically in the primary care setting to reach a more definitive process of ADHD diagnosis.

Corresponding author:
Dr. I. Berger
Neuro-Pediatric Unit, Hadassah-Hebrew University Medical Center, Mount Scopus, P.O. Box 24035, Jerusalem 91240, Israel
Phone: (972-2) 584-4751
Fax: (972-2) 532-8963
email: itberg@hadassah.org.il

References
5. Rommelse NN. Endophenotypes in the genetic research of ADHD over the last decade: have they lived up to their expectations? Expert Rev Neurother 2008; 8: 1425-9.
14. Dulcan M. Practice parameters for the assessment and treatment of children,
Tumors expressing CCL21 exhibited more aggressive growth and attracted a class of suppressive leukocytes

Successful tumor growth depends on the ability of the tumor to escape detection by the immune system. Human cancers that express the chemokine receptor CCR7 are associated with tumor metastasis and poor prognosis, suggesting that CCR7-dependent signaling might lead to an immunotolerant tumor microenvironment. Shields et al. studied a mouse melanoma model in which the tumors expressed varying amounts of the CCR7 ligand, CCL21. Tumors expressing CCL21 exhibited more aggressive growth and attracted a class of suppressive, rather than pro-inflammatory, leukocytes. Furthermore, the tumor microenvironment was rich in immunosuppressive cytokines and exhibited lymph node-like features. These features were not present in tumors that expressed low amounts of CCL21. Thus, tumor CCL21 expression promotes an immunotolerant tumor microenvironment, which is permissive for tumor growth and spread.

Science 2010; 328: 749
Eitan Israeli

Human adenovirus structure at 3.5 angstrom resolution

Human adenoviruses may be a common cause of acute infections in humans, but they can also be used as vectors for vaccine and therapeutic gene transfer. Rational engineering of safe adenovirus vectors has been hampered by a lack of high resolution structural information. Two papers now describe the structure of human adenovirus using complementary techniques. Reddy et al. (*Science* 2010; 329: 1071 Harrison) have determined the crystal structure at 3.5 angstrom resolution, while Liu et al. (p. 1038) solved the structure to 3.6 angstrom resolution by electron microscopy. Together the structures provide insights into viral assembly, stabilization, and cell entry mechanisms.

Eitan Israeli

Heterochromatin silencing of p53 target genes by a small viral protein

The transcription factor p53 (also known as TP53) guards against tumor and virus replication and is inactivated in almost all cancers. p53-activated transcription of target genes is thought to be synonymous with the stabilization of p53 in response to oncogenes and DNA damage. During adenovirus replication, the degradation of p53 by E1B-55k is considered essential for p53 inactivation, and is the basis for p53-selective viral cancer therapies. Soria and team have detected a dominant epigenetic mechanism that silences p53-activated transcription, irrespective of p53 phosphorylation and stabilization. The authors show that another adenoviral protein, E4-ORF3, inactivates p53 independently of E1B-55k by forming a nuclear structure that induces de novo H3K9me3 heterochromatin formation at p53 target promoters, preventing p53-DNA binding. This suppressive nuclear web is highly selective in silencing p53 promoters and operates in the backdrop of global transcriptional changes that drive oncogenic replication. These findings are important for understanding how high levels of wild-type p53 might also be inactivated in cancer as well as the mechanisms that induce aberrant epigenetic silencing of tumor-suppressor loci. This study changes the longstanding definition of how p53 is inactivated in adenovirus infection and provides key insights that could enable the development of true p53-selective oncolytic viral therapies.

Nature 2010; 466: 1076
Eitan Israeli