Thyrotoxic Hepatitis

Liat Barzilay-Yoseph MD1, Alla Shabun MD1, Lotan Shilo MD1, Ruth Hadary MD1,2, Dan Nabriski MD3 and Yona Kitay-Cohen MD1,2

1Department of Internal Medicine C; 2Liver Unit and 3Endocrine Clinic, Meir Medical Center, Kfar Saba, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel

KEY WORDS: thyrotoxicosis, Graves’ disease, hepatitis, thyrotoxic hepatitis

Liver abnormalities are not infrequent in thyrotoxicosis. Severe hepatitis in this clinical setting is quite rare [1]. Jaundice is hardly seen in overt hyperthyroidism and is usually attributed to congestive heart failure. We describe a young patient who presented with jaundice and fatigue. Following investigation she was diagnosed with severe hyperthyroidism compatible with Graves’ disease. After excluding other etiologies for her liver injury, she was treated with antithyroid medications. In this report, we discuss the association between hyperthyroidism and hepatitis and suggest that the term “thyrotoxic hepatitis” be reserved for such rare cases.

PATIENT DESCRIPTION

A 34 year old woman was admitted to the internal medicine ward due to fatigue and new-onset jaundice. There was no history of chronic disease, smoking, pharmaceutical or herbal medications, infections, alcohol abuse, blood transfusion or foreign travel. She had given birth 10 months previously; the delivery was normal and the child is healthy.

On initial physical examination there was significant jaundice. There was no tachycardia, and blood pressure and body temperature were normal. There was no exophthalmos or lid lag. The thyroid gland was diffusely enlarged with audible bruit above it. There were no findings of heart failure, chronic liver disease, lymphadenopathy or hepatosplenomegaly.

Laboratory workup showed hyperthyroidism and abnormal liver function tests: Free thyroxine was > 6 ng/dl (normal 0.8–2.0), total triiodothyronine 541 ng/dl (normal 80–180), thyroid-stimulating hormone 0.01 mU/L (normal 0.23–4.0). Total bilirubin 12.9 mg/dl (normal 0.2–1.5), direct bilirubin 10 mg/dl (normal 0.0–0.5), alkaline phosphatase 196 IU/L (normal 30–120), alanine aminotransferase 1374 IU/L (normal 0–40), aspartate aminotransferase 1355 IU/L (normal 7–37), gamma glutamyltransferase 150 IU/L (normal 7–49), lactate dehydrogenase 596 IU/L (normal 230–460), calcium 9.6 mg/dl (normal 8.5–10.5), albumin/globulin 4.1/2.4 g/dl respectively, hemoglobin 14.1 g/dl, prothrombin time 14.7 seconds, PT-international normalized ratio 1.40.

Hepatic investigation included viral, immune and metabolic tests as follows: Peripheral blood was negative for hepatitis B surface antigen, antibody to HBsAg, immunoglobulin M antibody to hepatitis B core, IgM antibody to hepatitis A virus, hepatitis C virus, cytomegalovirus, Epstein-Barr virus, autoantibodies (anti-nuclear antibodies, antimitochondrial antibodies, antismooth muscle antibodies and antineutrophil cytoplasmic antibodies) and thyroglobulin antibodies. Serology for liver-kidney-microsomal antibodies and antiparietal cell antibodies was positive at a titer of 1/80 and 1/320 respectively. Total IgG was 1600 mg/dl (normal 700–1600), alpha-fetoprotein 15.3 ng/ml (normal 0–10) and ceruloplasmin 29 mg/dl (normal 20–60).

Thyroid scintigraphy demonstrated a high level of diffuse technetium uptake consistent with a diffuse hyperplastic thyroid gland compatible with the diagnosis of Graves’ disease. Abdominal ultrasonography and Doppler study of the portal and hepatic veins showed normal flow. The differential diagnosis of the liver abnormality was “thyrotoxic hepatitis” versus a distinct liver disease associated with Graves’ disease such as autoimmune hepatitis.

Histopathological findings at liver biopsy showed extensive centrilobular necrosis and heavy portal and lobular inflammation with a predominance of lymphocytes. Plasma cells were absent. The findings were not suggestive of autoimmune hepatitis [Figures A & B].

In view of the severe thyrotoxicosis and secondary hepatitis as presented above, treatment with propylthiouracil at a total dose of 300 mg/day was initiated. Prednisone 40 mg/day was added as additional therapy to prevent conversion of T4 to T3.

One week after starting treatment we observed a dramatic decline in total T3 to normal values, bilirubin dropped to 8.7 mg/dl and liver enzymes dropped to half of maximal values (ALT 777 IU/L, AST 369 IU/L). Four months later complete normalization of thyroid hormones, bilirubin and liver enzymes was documented. Prednisone dose was tapered down until it was completely withdrawn over a period of 4 months. Propylthiouracil was tapered down and maintained for another year. One year after the cessation of prednisone the liver enzymes were persistently normal.

T4 = thyroxine
T3 = triiodothyronine
ALT = alanine aminotransferase
AST = aspartate aminotransferase
We present an unusual case of postpartum Graves’ disease manifested by severe hepatitis. Jaundice was the presenting symptom of this patient’s thyrotoxicosis. Graves’ disease accounts for 60–80% of thyrotoxicosis cases. The prevalence varies among populations, depending mainly on iodine intake. There is a threefold increase in the occurrence of Graves’ disease during the postpartum period. Associated abnormalities that may cause diagnostic confusion in thyrotoxicosis include elevation of bilirubin and liver enzymes.

The liver is the primary organ of thyroid hormone metabolism. Up to 85% of extrathyroidal deiodination of T4 to T3 and reverse T3 occurs in the liver. Moreover, plasma-binding proteins of thyroid hormone are produced by the liver. On the other hand, thyroid hormones have a major role in normal hepatic function and bilirubin metabolism. Mild liver abnormalities such as hypoalbuminemia and increased serum level of AST, ALT and ALP may be seen in 45% to 90% of patients with hyperthyroidism [1]. Clinically, patients present with self-limited hepatitis, with mild elevations in serum bilirubin in up to 5% of patients with thyrotoxicosis [1]. Jaundice in thyrotoxic patients may be due to heart failure. Massive hepatomegaly and fulminant hepatic failure have been rarely described [2]. Cholestatic hepatitis without heart failure is rare [3].

There are a few case reports of thyrotoxicosis associated with cholestatic hepatitis with marked hyperbilirubinemia. In one case the patient presented with cholestasis secondary to autoimmune hyperthyroidism. His jaundice was aggravated by antithyroid medications and improved later when radioactive iodine (I131) treatment resulted in euthyroidism [4]. Another case showed cholestatic hepatitis caused by subclinical hyperthyroidism and was treated successfully by rifampicin [4].

Among the possible mechanisms that may be involved in liver abnormalities associated with thyrotoxicosis are venous congestion due to high output heart failure and/or relative hypoxia. Thyrotoxicosis may increase oxygen demand and utilization which cannot be totally compensated by hepatic blood flow. The pericentral areas of hepatic acini constitute the most susceptible zone to ischemia. The hyperbilirubinemia is not well understood and there are no available data supporting the direct toxic effects of thyroid hormones on the liver. Conditions often associated with hyperthyroidism, such as congestive heart failure, infection and malnutrition, may play a role as well.

Liver biopsy findings in patients with mild hyperthyroidism-related hepatic injury are non-specific. Biopsy specimens may reveal lobular inflammation with some infiltrate consisting of polymorphonuclear leukocytes, eosinophils and lymphocytes. In addition, some patients may exhibit focal or diffuse centrilobular necrosis and perivenular fibrosis [4]. Our patient presented with severe liver injury manifested by jaundice and marked centrilobular necrosis. Autoimmune hepatitis, which is the main differential diagnosis in young women, was excluded due to the lack of hyperglobulinemia and the lack of plasma cells in the inflammatory infiltrate at liver biopsy. Although anti-LKM (liver-kidney-microsomal) antibodies were positive at a titer of 1:80, the diagnosis of autoimmune hepatitis was excluded based on the Revised Original Scoring System of the International Autoimmune Hepatitis Group [5]. The persistence of normal liver enzymes for a long period after a short course of prednisone therapy also argues against autoimmune hepatitis. The reversibility of hepatic injury by antithyroid treat-

\[\text{ALP} = \text{alkaline phosphatase} \]
ment supports our suspicion that the mechanism of liver injury involves relative hepatocellular ischemia.

Although antithyroid medication-related adverse reactions are frequently benign and transient in nearly all patients, propylthiouracil or methimazole-related hepatocellular cholestasis may cause some concern among clinicians. Regarding this troublesome issue, we do think that after exclusion of other hepatitis etiologies, propylthiouracil or metimazole is the correct decision for such patients. The addition of corticosteroids that prevent T4 to T3 conversion remains an option in severe cases.

CONCLUSION

Severe hepatitis may rarely occur as a presentation of thyrotoxicosis and therefore warrants the term “thyrotoxic hepatitis.” Thyroid function tests should be part of the investigation of obscure hepatitis. Although the mechanism is not completely understood, antithyroid drugs with or without corticosteroids are crucial in this life-threatening hepatitis. Further studies are needed to explore mechanisms and alternative treatments.

Corresponding author: Dr. Y. Kitay-Cohen
Director, Dept. of Internal Medicine C and Liver Unit, Meir Medical Center, Kfar Saba 44281, Israel

References

MicroRNAs 103 and 107 regulate insulin sensitivity

Defects in insulin signaling are among the most common and earliest defects that predispose an individual to the development of type 2 diabetes. MicroRNAs have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism. However, the direct regulation of insulin sensitivity by microRNAs in vivo has not been demonstrated. Trajkovsk and co-authors show that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice. Silencing of miR-103/107 leads to improved glucose homeostasis and insulin sensitivity. In contrast, gain of miR-103/107 function in either liver or fat is sufficient to induce impaired glucose homeostasis. The authors identified caveolin-1, a critical regulator of the insulin receptor, as a direct target gene of miR-103/107. They demonstrated that caveolin-1 is upregulated upon miR-103/107 inactivation in adipocytes and that this is concomitant with stabilization of the insulin receptor, enhanced insulin signaling, decreased adipocyte size and enhanced insulin-stimulated glucose uptake. These findings demonstrate the central importance of miR-103/107 to insulin sensitivity and identify a new target for the treatment of type 2 diabetes and obesity.

Nature 2011; doi:10.1038/nature10112
Eitan Israeli

Non-alcoholic fatty liver disease

The capacity to store excess fat in liver is beneficial to migrating birds in need of energy, but in humans, fatty liver is maladaptive and can have serious clinical consequences. Accompanying the trend toward unhealthy diets, non-alcoholic fatty liver disease (NAFLD) now affects about one-third of adults in developed countries and is a growing health concern. In the most extreme form of NAFLD, the aberrant accumulation of fat can lead to inflammation, liver cancer, or organ damage so severe that a liver transplant is required. Cohen et al. reviewed the current understanding of how NAFLD arises in humans, focusing on insights that have emerged from recent genetic and metabolic studies.

Science 2011; 332: 1519
Eitan Israeli

“How far you go in life depends on your being tender with the young, compassionate with the aged, sympathetic with the striving and tolerant of the weak and strong. Because someday in life you will have been all of these”

George Washington Carver (1864-1943), American scientist, botanist, educator, and inventor