Antisemitism and the History of Medicine: the Challenge Then and Now

Rael D. Strous MD

Beer Yaakov Mental Health Center, Beer Yaakov, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel

KEY WORDS: antisemitism, Nazi era, medical profession, myasthenia gravis

Antisemitism is not a new trend or occurrence unique to the 20th century, but a phenomenon that has plagued Jews for centuries, since Abraham in fact. Violent and repressive antisemitism, as perpetrated by the Crusaders, the Spanish inquisition and the Cossack pogroms, paled in comparison to that of Hitler’s Germany. It is against this background that Freedman [1] describes the connection between myasthenia gravis and antisemitism through the work of four prominent Jewish physicians. The role of these individuals was pivotal in the description and management of the disease – from the laboratory to the bedside; and their contribution to the understanding of the disease was immense. However, it is questionable whether MG was more associated with antisemitism than other illnesses that were being researched by Jews at the time. Indeed, all Jewish physicians who were conducting research and practicing medicine in Nazi Germany and neighboring countries were affected by the ogre of antisemitism. Before and during the Nazi era they suffered harshly from discrimination, with many denied promotion, losing their jobs, having to leave the country, and even perishing in death camps. There was no differentiation regarding the level of physician affected: whether medical student, resident, physician in practice, or distinguished well-published professor. By 1935 no new licenses to practice medicine were being issued to those of Jewish origin, and by autumn 1938 the license to practice medicine by Jews was revoked absolutely [2].

This bigotry did not affect only those involved in the description of myasthenia gravis. Others with eponyms (illnesses named after them) who suffered during the Nazi regime [3] include the dermatologists Abraham Buschke (for whom Buschke’s disease is named) and Karl Herxheimer (Jarisch-Herxheimer reaction) who died in the Theresienstadt concentration camp, the pathologist Ludwig Pick (Niemann-Pick disease, Pick’s retinitis) who also perished in Theresienstadt, the pediatrician Simon van Creveld (Ellis-van Creveld syndrome) who was imprisoned in a concentration camp but survived the war, the neurologist Lucja Frey-Gottesman (Frey’s syndrome) who probably died in the Belzec death camp, the surgeon Eugene Alexander Polya (Polya’s operation) who was murdered by the Hungarian Arrowcross fascists, and the neurologist Arthur Simons (Barraquer-Simons syndrome) who died in the Vaivara concentration camp in northeast Estonia. What is notable about these physicians as well as the four involved in the description of MG is their different nationalities. Frey-Gottesman was Polish, van Creveld Dutch, Polya Hungarian, and Goldflam Polish. Clearly, discrimination against Jewish doctors was not limited to Germany. Surprisingly, the United States had quotas restricting the access of Jewish students and physicians to medical school and postgraduate training [4]. It was claimed that Jewish students were too studious, forceful and ambitious in their desire to succeed. This phenomenon of antisemitism in medicine relates not only to efforts to segregate, repress or injure Jewish doctors, but also to stereotypic views about Jews which led to many being excluded from the profession.

Many Jewish physicians had to abandon their profession and research as they fled Germany and the surrounding countries. But, with their newfound freedom in countries such as Britain, Canada and the U.S., their careers flourished. To name a few: psychoanalyst Michael Balint, ophthalmologist Alfred Bielschowsky, surgeon and gynecologist Jacob Moritz Blumberg, the gastroenterologist Ismar Isidor Boas, the neurologist Friedrich H. Lewy, serologist Manfred Martin Mayer, dermatologist Moriz Oppenheim, surgeon Rudolf Nissen, neurologist Robert Wartenberg, immunologist Ernst Wittebsky and serologist Hans Sachs [3]. However, many of those who fled never regained the lost momentum of their medical research careers owing to circumstances and limited opportunities in their new countries. Lazar Remen is a good example of someone who left an illustrious career as a clinician and researcher in Germany, and whose name was never to appear again in the medical literature.

Despite the evidence of overt antisemitism in Europe during the 19th and 20th centuries, one very positive message emerges from Freedman’s article. I refer to the fine clinical mastery of observation that all these four clinicians
demonstrated. This skill is often lacking in our world of super-technology, where too often doctors forget the importance of good clinical skills in the art of diagnosis and management. Medical students in particular can learn from this. There is no substitute for a fine eye to discern differences and similarities in clinical presentation.

Another point of note to emerge from Freedman’s paper challenges the conventional view that discrimination against Jewish doctors was prevalent only during the Nazi era. Hermann Oppenheim, for example, a leading neurologist, was refused promotion by the Prussian Ministry of Education on the grounds that he was a Jew – in 1890.

Despite the darkness, there were still remnants of a fine generation of men of character – as exemplified by Goldflam and his contemporaries such as Henryk Goldszmit (better known as Janusz Korczak, founder of the Polish Orphans’ Home) and Gershon Lewin (who contributed both to medicine and to the world of Jewish culture and activism) – all of whom demonstrated exceptional character, integrity and social values. How needful is our generation of this aspect of medical practice.

The history of medicine is replete with discrimination against Jewish doctors. For the present generation, antisemitism impeding progress or opportunities is either latent or non-existent. The hope remains that the antisemitic bear will not reawaken, despite recent reports from Europe indicating the need for vigilance. What is critical is that Jewish doctors not allow these barriers to affect their dedication to their patients or their research.

Most important, we need to maintain the highest levels of ethical behavior and professionalism, without compromise. The sick of this world deserve no less.

Correspondence:
Dr. R. Strous
Beer Yaakov Mental Health Center, P.O. Box 1, Beer Yaakov 70350, Israel
Phone: (972-8) 925-8280
Fax: (972-8) 925-8224
e-mail: raels@post.tau.ac.il

References

Capsule

Repulsion of superinfecting virions: a mechanism for rapid virus spread

Viruses are thought to spread across susceptible cells through an iterative process of infection, replication and release, so that the rate of spread is limited by replication kinetics. Doceuo et al. showed that vaccinia virus spreads across one cell every 75 minutes, fourfold faster than its replication cycle would permit. To explain this phenomenon, the authors found that newly infected cells express two surface proteins that mark cells as infected and, via exploitation of cellular machinery, induce the repulsion of superinfecting virions away toward uninfected cells. Mechanistically, early expression of proteins A33 and A36 was critical for virion repulsion and rapid spread, and cells expressing these proteins repelled exogenous virions rapidly. Additional spreading mechanisms may exist for other viruses that also spread faster than predicted by replication kinetics.

Science 2010; 327: 873

Eitan Israeli

Capsule

Transplantation of inhibitory neurons has therapeutic potential for brain repair

During critical periods in early life, sensory experience molds circuits in the brain. In the visual cortex, blurring or occluding vision in one eye triggers a rapid reorganization of neuronal responses known as ocular dominance plasticity. The critical period for this plasticity depends on inhibitory neurotransmission. Southwell et al. show that by transplanting embryonic precursors of inhibitory neurons into mice, a period of ocular dominance plasticity can be induced at the end of the normal critical period. These observations suggest that transplantation of inhibitory neurons has therapeutic potential for brain repair and for treating neurological disorders and inducing periods of brain plasticity.

Science 2010; 327: 1145

Eitan Israeli

“Nowhere can man find a quieter or more untroubled retreat than in his own soul”

Anonymous