Women’s Higher Risk with N-6 PUFA vs. Men’s Relative Advantage: An “N-6 Gender Nutrition Paradox” Hypothesis

Niva Shapira PhD RD Agr

Institute for Nutrition Research, Rabin Medical Center (Beilinson Campus), Petah Tikva, Israel

ABSTRACT: The “Israeli Paradox” (1996) of low national health rankings despite adequate diet – attributed to high dietary n-6 polyunsaturated fatty acids (PUFA) – coincided with long-observed dichotomies between women’s worse international status vs. men’s advantage. This raised the possibility of a gender link to high n-6 risk potentially explaining both national phenomena. Israeli women’s disadvantage was shown by worse international rankings, i.e., life expectancy (LE) – 11th vs. men’s 3rd-best/22 countries (2000), and 14th vs. 6th/34 (2010); and all-cause and all-cancer mortality – both 15th vs. 2nd-best/22 (2000), and 15th vs. 6th/22 and 12th vs. 2nd-best/22 (2010). Cancer mortality rates for breast were 21.8% above vs. prostate 30.4% below Eur-A (27 country) averages (2005). Gender gaps/ratios were smaller than European Union-15 averages, i.e., for LE at birth by 34.4–26.4% (2000–2010), respectively, and at 65 years 45.9–35.3%; all-cause mortality by 43.3–33.4%, and all-cancer 65.2–58.7%. The Israeli diet was mostly close to guidelines, but n-6 intake (10–12% kcal) was much higher than recommended and traditional “Mediterranean diet” levels. Research showing females’ greater potential for conversion of PUFA to long-chain PUFA (LCPUFA) may suggest increased production of n-6 eicosanoids with known pro-inflammatory/oxidative/carcinogenic potential. An “Israeli N-6 Gender Nutrition Paradox” hypothesis is suggested here for the first time, associating women’s higher risk and lead in the national “paradox” with greater potential for n-6 conversion to pro-inflammatory/oxidative/carcinogenic eicosanoids compared to men. This may also exacerbate women’s risk associated with genetic predisposition (i.e., BRCA) and/or sociopolitical stress. Global abandonment of traditional diets/foods together with increasing n-6 consumption and western disease rates emphasize the importance of considering gender nutrition in epidemiology and preventive strategies.

KEY WORDS: cancer, diet, gender, n-6/n-3, polyunsaturated fatty acids (PUFA), women
Since the 1950s, Israeli gender differentials in LE have been very low when compared to other developed countries, reflecting women’s relatively low and men’s high LE. Israeli male:female LE differences were much smaller than the averages of 18 western countries in the 1950s–1990s (by 25.4–39.6%, respectively) [Figure 1] [5]; the smallest among Eur-A countries with low mortality rates and well below the Eur-A average from 1980 to 2000 [Figure 2A]; the smallest among 22 developed countries in 2000 [Figure 3A]; and much smaller in 2000–2010 (by 39.5–25.4%) compared to 15 European Union countries with similar socioeconomic status (EU-15) [Table 1 and Figure 1C and D].

CVD was initially assumed to be the leading cause of Israeli women’s health disadvantage [13] and, correspondingly, male:female CVD mortality ratios were among the smallest in international comparisons. However, the gender ratios for cancer rates were even smaller, and thus contributed significantly more than CVD to Israeli’s exceedingly small male:female LE ratio from the 1950s to 1990s [5]. This was shown (2000) by smaller male:female mortality ratio for cancer (1.23) than for all-cause (1.38), and much smaller (by 67.1%) than for ischemic heart disease (1.70) [Figure 3B]. In 2000–2010, Israeli male:female mortality differences for all-cancer were smaller than for all-cause [Table 1, Figure 1], and both were smaller than the EU-15 average (all-cancer smaller by 62–58.7% and all-cause by 43.3–33.4%). This showed that the smaller gender ratio for cancer was consistently more contributory than other diseases to the characteristically small gender gap among Israelis.

Women’s disadvantage in cancer mortality was shown by higher rates relative to other countries [1,5], i.e., 21.8% higher than Eur-A (2005) and compared to the EU-15 average (by 8.0–3.6%, 2000–2010) [Table 1]; in their lead in the national “cancer-shift” over heart disease mortality [14]; and by consistently worse international cancer mortality rankings vs. men’s advantage, i.e., 15th vs. 37th in 44 Eurasian countries (1999); 17th vs. 34th in 37 European countries (2005); 15th vs. men’s 2nd-best in 22 developed countries (2005) [2], and 23rd vs. men’s 5th-best in 30 countries with the world’s highest LE (2006) [15].

Men’s advantage in cancer risk was emphasized by lower disease mortality rates compared to 18 western countries (1950–1990) [5], compared to the Eur-A average (1970–1992) [Figures 2B and 2C] [16], and by men’s lower all-cancer mortality rates than the EU-15 average (by 22.4–27.9%) [Table 1, 2000–2010]. Moreover, prostate cancer mortality was much lower than the Eur-A average (-30.4%), where breast cancer rates were much higher (+21.8%) (2005). The resultant Israeli prostate:breast cancer mortality ratio (0.55:1) was 56.1% lower than the EU-15 average (0.98:1) [2] [Figure 3B] and lower compared to similarly developed Mediterranean countries such as Greece (0.72:1), France (0.92:1), Spain (0.93:1) and Italy (1.56:1) [11]. Within Israel, men’s all-cancer rates were slightly lower than women’s [17,18], with prostate cancer incidence, 8.2%, about half that of breast, 17.1%, and mortality 4.9% vs. 10.8% [2], contributing 9.8% of men’s and 21.3% of women’s mortality (2000) [12]; in 2005, the incidence was 9.6% vs. 15.9%, mortality 4.2% vs. 10.1%, contributing 19.7% vs. 30.8% of total mortality. Taken together, it appears that both women’s worse and men’s better rates contributed to Israel’s characteristically small gender gap. However, this trend declined from the 1950s to 2010 [Figure 1], along with a relative decrease in the male advantage [Table 1], i.e., in LE and all-cause mortality, though Israeli men’s cancer rates continued to be lower relative to other countries.
DIETARY N-6 INTAKE PATTERNS
The Israeli diet is mostly compatible with recommendations in both women and men, i.e., for energy (women-men 1533–2212 kcal/day), protein (58.0–86.0 g/day, 15.1–15.6% kcal), carbohydrates (203.0–282.0 g/day, 53.0–51.0% kcal), fiber (15.0–19.0 g/day, 25.9–22.1% carbohydrates), total fat (57.0–84.0 g/day, 35.3–34.2% kcal), saturated FA (16.4–23.3 g/day, 4.3–4.2% kcal), n-9 (18.8–28.8 g/day, 4.9–5.2% kcal, mostly oleic acid [18:1] from canola/olive oils), and n-3 (1.5–2.2 g/day, 0.9% kcal, mostly alpha-linolenic acid [18:3] from nuts, seeds, and canola oil) [19]. However, n-6 was exceedingly high ≈12% kcal (from soy/corn oils) [1], associated with very high adipose LA accumulation, ≈26% FA (1996). Later reports suggested a decline in n-6 intake to 10% kcal, with 25% of the population still consuming LA at ≥ 12% kcal [3], and a national report (2001) showed n-6 intake of 8.4% kcal (15.6 g/day) in men and women [19]. The decline in n-6 intake can be attributed to increasing intakes of low-n-6 canola oil (with ≈19% LA) and olive oil (≈10% LA) [20], which partially replaced the high-n-6 soy (≈51% LA) and corn (≈55% LA) oils that had dominated since the 1950s. However, dietary n-6 levels and n-6:n-3 ratios have remained ≈twofold higher than the level and ratio in the traditional Mediterranean diet (7.8 g/day and 4.3:1) [19,21] – twice the maximal safe and effective intake (≈3.8% kcal) for incorporation into tissue lipids [22]. It is also much higher than official recommendations, i.e., by Health and Welfare Canada, U.S. Institute of Medicine, British Nutrition Foundation, and French Apports Nutritionnels Conseillés. Recent n-6 recommendations of 5–10% kcal by the American Heart Association raised critical response arguing that these levels were shown to be associated with increased risk [23].

N-6 AND DISEASE RISK
High intakes of n-6 (mostly LA) with increased ARA and related pro-inflammatory/oxidative/carcinogenic eicosanoids [24] were found to be associated with oxidation of low density lipoproteins and adipose tissue lipids [25], and greater risk of myocardial infarction [3], chronic inflammatory diseases [24] and breast cancer [26]. Recent epidemiologic research incorporating large cohorts has suggested a positive association between n-6 intake and risk of breast cancer, and negative association with n-3 ALA and n-9 OA [27]. High n-6 was also associated with estrogen-driven upregulation of oncogenes (the BRCA1 gene), whereas inhibitors of eicosanoid/prostaglandin formation (salicylic acid) decreased BRCA1 mRNA expression and attenuated breast cancer cell proliferation [28].

* Eur-A (27 countries with very low child and adult mortality rates) = Andorra, Austria, Belgium, Croatia, Cyprus, the Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, Malta, Monaco, the Netherlands, Norway, Portugal, San Marino, Slovenia, Spain, Sweden, Switzerland, and the UK

EPIDEMIOLOGICAL SUPPORT FOR N-6-ASSOCIATED RISK
The lifelong cancer risk of Israeli Jewish women was twice that of Israeli Arab women, 1:3 vs. 1:6 (2000) [18], and their breast cancer incidence ranked 3rd highest vs. Israeli Arab women who ranked 3rd lowest/18 countries (1997). This was concurrent with a higher Jewish dietary n-6 (by 25.5%) and n-6:n-9 ratio (by 40.3%) [19] compared to Israeli Arabs,
and higher than other Mediterranean and neighboring Arab countries [10,19,20]. However, all-cancer mortality rates increased much more rapidly in Israeli Arabs compared to Israeli Jews (1982–2002), ≈twofold in men and ≈eightfold in women, with a breast cancer increase of ≈eightfold, gradually narrowing the gap between the two population groups [17]. This was concurrent with increased n-6 intake, as soy and corn oils partially replaced Arabs’ traditionally dominant high-n-9 olive oil [20].

Several European countries were found to have high n-6 intakes close to recent (reduced) Israeli levels (12.3–16.1 g/day) [20], with high female breast cancer rates and evidence of positive correlations to dietary n-6 and n-6:n-3 long-chain PUFA ratios, and negative correlations to n-3 LCPUFA [27,29]. The U.S., whose breast cancer rates are the highest in the world (incidence 101.1/100,000, mortality 19.0/100,000) [29], has average dietary n-6 intakes of 15.6 g/day and n-6:n-3 ratio of approximately 9:1 [30], both similar to recent Israeli values. A U.S. multi-ethnic case-control study showed an association between breast cancer incidence and use of high n-6 vegetable/corn oils relative to olive/canola oils rich in n-9 [31]. In Singapore, which has the highest breast cancer incidence in Asia (54.9/100,000), risk has increased with adoption of a western diet, including increased n-6 intake and n-6:n-3 ratio [32]. Among Alaskan Natives (1990–2005), women’s breast cancer incidence increased by 46.4% (from 66.4 to 97.2/100,000) while men’s prostate cancer decreased by 29.3% (98.4 to 69.5/100,000) [33] with abandonment of the Native Alaskan diet, traditionally high in n-3 [34].

High n-6 LA and ARA content of adipose tissue (i.e., in breast tissue), an accepted measure of intake, has been associated with increased breast cancer risk in case-control studies, while low adipose n-6:n-3 ratio and high n-3 LCPUFA eicosapentaenoic acid and docosahexaenoic acid content showed a protective effect [27]. The above epidemiologic findings appear to support the n-6 gender nutrition hypothesis, with Israel representing an extreme case.

GENDER DIFFERENCES IN FATTY ACID METABOLISM AND PATHOPHYSIOLOGY

Gender-mediated differences in FA metabolism have been suggested by several researchers, in both animal models and humans. In vivo studies have shown that testosterone reduces the activities of delta-5- and delta-6-desaturases, key enzymes in the conversion of PUFA to LCPUFA, i.e., n-6 LA to ARA, and n-3 ALA to EPA and DHA, while estrogen was associated with an increase [35]. Activities of delta-5 and delta-6-desaturase enzymes were 1.2- to 3-fold greater in females compared to males in a rat liver model, with mRNA expression greater by 3.8- and 2.5-fold, respectively [36]. This is further evidenced by lower male ratios...
of ARA:LA and DHA:ALA compared to females, in both plasma and cellular fractions [35].

In clinical evaluations, women were found to have greater or more efficient PUFA conversions compared to men [37,38], and dietary N-6 LA-induced increases in promutagenic DNA etheno-adducts in white blood cells, by up to 40-fold, while no significant change was observed in men [39]. Carcinogenic/mutagenic byproducts of n-6 prostaglandins and peroxidation, such as malonaldehyde, have also been suggested to affect women more than men [40].

SUMMARY

An "N-6 Gender Nutrition Paradox" hypothesis of women's higher health risk with increased n-6 intake, compared to men's relative advantage, is suggested here to be associated with women's greater capacity for conversion of n-6 PUFA to LCPUFA, i.e., LA to ARA, and related pro-inflammatory/oxidative/carcinogenic eicosanoids. This suggests a biological gender-based explanation for the "Israeli paradox" of the unexpectedly low national health status despite an otherwise adequate diet, and for women's long-observed relative disadvantage. These findings support the Israeli paradox hypothesis and introduce the "n-6 gender nutrition" aspect, suggesting a redefinition – namely, an Israeli "N-6 Gender Nutrition Paradox" hypothesis.

With declining n-6 and increasing n-3 and n-9 intakes, i.e., from canola and olive oils substituting for high n-6 LA corn and soy oils, the gender discrepancies have been decreasing. However, a reverse dietary trend among Israeli Arabs has reproduced the phenomenon of women's increased risk with n-6 intake. These findings, together with additional epidemiologic evidence of the link between n-6 and western diseases – especially cancer – may support the n-6 gender nutrition hypothesis, presented here for the first time. The link may not preclude, but could potentially exacerbate, risks associated with other etiologies, i.e. BCRA1/2 mutations.

Limitations of this analysis may have been the use of official statistics produced for other purposes, the observational nature of available studies and inability to adjust for all possible confounders, the small scale of nutritional studies, and a population with transitional, immigration and sociopolitical stresses as well as highly diverse traditions.

Given the global abandonment of protective traditional diets and increase in n-6 consumption concurrent with western diseases, this specific aspect – and gender nutrition in general – warrants research within the new framework of genetic/epigenetic and personalized medicine concepts.

Table 1. Life expectancy and mortality rates, Israeli women and men and the EU-15* averages (2000–2010)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Israel</td>
<td>EU-15</td>
<td>% Diff</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE at birth (yrs)</td>
<td>80.0</td>
<td>79.9</td>
<td>+0.1%</td>
</tr>
<tr>
<td>LE at 65 (yrs)</td>
<td>18.0</td>
<td>18.6</td>
<td>-3.2%</td>
</tr>
<tr>
<td>All-cause mortality per 100,000</td>
<td>439.1</td>
<td>430.1</td>
<td>+2.1%</td>
</tr>
<tr>
<td>All-cancer mortality per 100,000</td>
<td>120.8</td>
<td>111.9</td>
<td>+8.0%</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE at birth (yrs)</td>
<td>76.0</td>
<td>73.8</td>
<td>+3.0%</td>
</tr>
<tr>
<td>LE at age 65 (yrs)</td>
<td>16.0</td>
<td>14.9</td>
<td>+7.4%</td>
</tr>
<tr>
<td>All-cause mortality per 100,000</td>
<td>608.0</td>
<td>728.0</td>
<td>-16.5%</td>
</tr>
<tr>
<td>All-cancer mortality per 100,000</td>
<td>148.3</td>
<td>191.0</td>
<td>-22.4%</td>
</tr>
</tbody>
</table>

LE = life expectancy, EU = European Union

*Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United Kingdom
Acknowledgments
The author thanks Osnat Sharon MS RD and Hagit Hershkovitz-Friedman MS for their assistance in preparing this paper.

Address for correspondence:
Dr. N. Shapira
5 Kehilat Jitomir St., Tel Aviv 69405, Israel
Phone: (972-3) 649-7986
Fax: (972-3) 647-2184
email: nivnet@inter.net.il

References
23. Ramsden CE, Hübßen JR, Majchrzak SF, Davis JM. n-6 fatty acid-specific and mixed polyunsaturated dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials [Review], Br J Nutr 2010; 104 (11): 1586-600.
25. Tsimikas S. Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease [Review], Am J Cardiol 2006; 98 (11A): 1-17P.
Epidemiological studies have suggested that the increase in the incidence of asthma and other inflammatory diseases seen in many parts of the world may be due to a reduced exposure to microbes during early childhood. Olszak and co-workers show that commensal microflora help to regulate the numbers and functions of natural killer T (NKT) cells in the colon and lung in mice. Germ-free mice had elevated numbers of NKT cells in these tissues and were more susceptible to chemically induced colitis and allergic asthma. Neonatal recolonization of germ-free mice with microflora prevented enhanced colitis and asthma sensitivity; however, exposure of adult mice to these conditions was not effective. Thus, early exposure to microbes has important, lasting effects on the immune system’s sensitivity to inflammation.

Science 2012; 336: 489
Eitan Israeli