• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Thu, 09.10.25

Search results


July 2016
Marina Leitman MD, Eli Peleg MD, Ruthie Shmueli and Zvi Vered MD FACC FESC

Background: The search for the presence of vegetations in patients with suspected infective endocarditis is a major indication for trans-esophageal echocardiographic (TEE) examinations. Advances in harmonic imaging and ongoing improvement in modern echocardiographic systems allow adequate quality of diagnostic images in most patients.

Objectives: To investigate whether TEE examinations are always necessary for the assessment of patients with suspected infective endocarditis. 

Methods: During 2012–2014 230 trans-thoracic echo (TTE) exams in patients with suspected infective endocarditis were performed at our center. Demographic, epidemiological, clinical and echocardiographic data were collected and analyzed, and the final clinical diagnosis and outcome were determined. 

Results: Of 230 patients, 24 had definite infective endocarditis by clinical assessment. TEE examination was undertaken in 76 of the 230 patients based on the clinical decision of the attending physician. All TTE exams were classified as: (i) positive, i.e., vegetations present; (ii) clearly negative; or (iii) non-conclusive. Of the 92 with clearly negative TTE exams, 20 underwent TEE and all were negative. All clearly negative patients had native valves, adequate quality images, and in all 92 the final diagnosis was not infective endocarditis. Thus, the negative predictive value of a clearly negative TTE examination was 100%.

Conclusions: In patients with native cardiac valves referred for evaluation for infective endocarditis, an adequate quality TTE with clearly negative examination may be sufficient for the diagnosis.

 

June 2016
Ely L. Steinberg MD, Eitan Segev MD, Michael Drexler MD, Tomer Ben-Tov MD and Snir Nimrod MD

The progression from standard celluloid films to digitalized technology led to the development of new software programs to fulfill the needs of preoperative planning. We describe here preoperative digitalized programs and the variety of conditions for which those programs can be used to facilitate preparation for surgery. A PubMed search using the keywords “digitalized software programs”, “preoperative planning” and “total joint arthroplasty” was performed for all studies regarding preoperative planning of orthopedic procedures that were published from 1989 to 2014 in English. Digitalized software programs are enabled to import and export all picture archiving communication system (PACS) files (i.e., X-rays, computerized tomograms, magnetic resonance images) from either the local working station or from any remote PACS. Two-dimension (2D) and 3D CT scans were found to be reliable tools with a high preoperative predicting accuracy for implants.  The short learning curve, user-friendly features, accurate prediction of implant size, decreased implant stocks and low-cost maintenance makes digitalized software programs an attractive tool in preoperative planning of total joint replacement, fracture fixation, limb deformity repair and pediatric skeletal disorders.

May 2016
Efraim Siegler MD, Yakir Segev MD, Lena Mackuli MD, Ron Auslender MD, Mayan Shiner PhD and Ofer Lavie MD

Background: Vulvar and vaginal malignant and premalignant lesions are uncommon and are clinically heterogeneous diseases with two pathways of carcinogenesis: human papillomavirus (HPV) induced or non-HPV induced.                    

Objectives: To evaluate the demographic and clinical characteristics associated with vulvar or vaginal cancer and vulvar and vaginal intraepithelial neoplasia 3 (VIN3, VAIN3).

Methods: We conducted a retrospective chart review of 148 women with vulvar and vaginal malignancy and pre-malignancy for the period October 2004 to October 2012, and identified 59 and 19 patients with vulvar and vaginal cancer respectively, and 57 and 13 patients with VIN3 and VAIN3 respectively

Results: The median age of vulvar cancer patients was 30 years older than that of VIN3 patients. HPV was found in 60% and 66.6% of vulvar and vaginal cancer patients respectively, and in 82.3% and 84.6% of patients with VIN3 and VAIN3 respectively. A history of cervical intraepithelial neoplasia (CIN) or warts was observed in 10% and 10.5% of vulvar and vaginal cancer patients respectively, and in 57.9% and 46% of patients with VIN3 and VAIN3 respectively. In 52.6% of patients the vaginal cancer was metastases from other organs. 

Conclusions: Most women with vulvar carcinoma are older than 70 years old. VIN3 and VAIN3 are associated with HPV infection and the most prevalent type is HPV16. Almost half the vaginal cancers are associated with metastases from other organs and almost half of VAIN3 is associated with past cervical dysplasia or carcinoma. 

 

Daniel Elbirt MD, Keren Mahlab-Guri MD, Shira Bezalel-Rosenberg MD, Ilan Asher MD and Zev Sthoeger MD
April 2016
Miriam Regev MD PhD and Elon Pras MD

Autoimmune diseases are classic examples of multifactorial disorders in which a large number of genes interact with environmental factors to form the final phenotype. Identification of the genes involved in these diseases is a daunting challenge. Initially the search involved the candidate approach where polymorphisms in suspected genes were tested for association in large cohorts of patients and controls. Today, the most widely used method is genome-wide association studies (GWAS), a method based on screening large panels of patients and controls with hundreds of thousands of single nucleotide polymorphisms (SNPs), with microarray-based technology. Unique families in which autoimmune diseases are caused by single genes are another alternative. The identification of candidate genes is often followed by studies that provide biologic plausibility for the findings. The widely expanding list of genes involved in autoimmune conditions show that the same genes frequently underlie the pathogenesis of different autoimmune diseases. Despite all available resources, the main void of heritability in autoimmune conditions is yet to be discovered. Identification of these genes will help define new biological pathways and identify novel targets for the development of new therapeutic drugs.

February 2016
Amjad Shalabi MD, Ehud Raanani MD, Amihai Shinfeld MD, Rafael Kuperstein MD, Alexander Kogan MD, Alexander Lipey MD, Eyal Nachum MD and Dan Spiegelstein MD

Background: Prolonged life expectancy has increased the number of elderly high risk patients referred for surgical aortic valve replacement (AVR). These referred high risk patients may benefit from sutureless bioprosthesis procedures which reduce mortality and morbidity.

Objectives: To present our initial experience with sutureless aortic bioprotheses, including clinical and echocardiographic results, in elderly high risk patients referred for AVR. 

Methods: Forty patients (15 males, mean age 78 ± 7 years) with symptomatic severe aortic stenosis underwent AVR with the 3F Enable™ or Perceval™ sutureless bioprosthesis during the period December 2012 to May 2014. Mean logistic EuroScore was 10 ± 3%. Echocardiography was performed preoperatively, intraoperatively, at discharge and at follow-up.

Results: There was no in-hospital mortality. Nine patients (22%) underwent minimally invasive AVR via a right anterior mini-thoracotomy and one patient via a J-incision. Four patients underwent concomitant coronary aortic bypass graft, two needed intraoperative repositioning of the valve, one underwent valve exchange due to inappropriate sizing, three (7.5%) had a perioperative stroke with complete resolution of neurologic symptoms, and one patient (2.5%) required permanent pacemaker implantation due to complete atrioventricular block. Mean preoperative and postoperative gradients were 44 ± 14 and 13 ± 5 mmHg, respectively. At follow-up, 82% of patients were in New York Heart Association functional class I and II.

Conclusions: Sutureless AVR can be used safely in elderly high risk patients with relatively low morbidity and mortality. The device can be safely implanted via a minimally invasive incision. Mid-term hemodynamic results are satisfactory, demonstrating significant clinical improvement.

 

January 2016
Eyal R. Nachum MD, Ehud Raanani MD, Amit Segev MD, Victor Guetta MD, Ilan Hai MD, Amihai Shinfeld MD, Paul Fefer MD, Hamdan Ashraf MD, Israel Barabash MD, Amjad Shalabi MD and Dan Spiegelstein MD

Background: The rate of mitral bioprosthesis implantation in clinical practice is increasing. Transcatheter valve-in-valve implantation has been described for high risk patients requiring redo valve surgery. 

Objectives: To report our experience with transapical valve-in-valve implantation for failed mitral bioprosthesis.

Methods: Since 2010, 10 patients have undergone transapical valve-in-valve implantation for failed bioprosthesis in our center. Aortic valve-in-valve implantation was performed in one of them and mitral valve-in-valve implantation in nine. Mean age was 82 ± 4 years and 6 were female (67%). Mean time from original mitral valve (MV) replacement to valve-in-valve procedure was 10.5 ± 3.7 years. Follow-up was completed by all patients with a mean duration of 13 ± 12 months. 

Results: Preoperatively, all patients presented with significant mitral regurgitation; two with mitral stenosis due to structural valve failure. All nine patients underwent successful transapical valve-in-valve implantation with an Edwards Sapien™ balloon expandable valve. There was no in-hospital mortality. Mean and median hospital duration was 15 ± 18 and 7 days respectively. Valve implantation was successful in all patients and there were no major complications, except for major femoral access bleeding in one patient. At last follow-up, all patients were alive and in NYHA functional class I or II. Echocardiography follow-up demonstrated that mitral regurgitation was absent or trivial in seven patients and mild in two. At follow-up, peak and mean gradients changed from 26 ± 4 and 8 ± 2 at baseline to 16.7 ± 3 and 7.3 ± 1.5, respectively.

Conclusions: Transcatheter transapical mitral valve-in-valve implantation for failed bioprosthesis is feasible in selected high risk patients. Our early experience with this strategy is encouraging. Larger randomized trials with long-term clinical and echocardiographic follow-up are recommended.

 

Etty Daniel-Spiegel MD, Micha Mandel PhD, Daniel Nevo MA, Avraham Ben-Chetrit MD, Ori Shen MD, Eliezer Shalev MD and Simcha Yagel MD

Background: Selection of appropriate reference charts for fetal biometry is mandatory to ensure an accurate diagnosis. Most hospitals and clinics in Israel use growth curves from the United States. Charts developed in different populations do not perform well in the Israeli population.

Objectives: To construct new reference charts for fetal biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur length (FL), using a large sample of fetuses examined at 14–42 weeks gestational age in a medical center and a community ultrasound unit located in two different regions of Israel. 

Methods: Data from the medical center and the community clinic were pooled. The mean and standard error of each measure for each week was calculated. Based on these, reference charts were calculated using quantiles of the normal distribution. The performance of the reference charts was assessed by comparing the new values to empirical quantiles.

Results: Biometric measurements were obtained for 79,328 fetuses. Growth charts were established based on these measurements. The overall performance of the curves was very good, with only a few exceptions among the higher quantiles in the third trimester in the medical center subsample.

Conclusions: We present new local reference charts for fetal biometry, derived from a large and minimally selected Israeli population. We suggest using these new charts in routine daily obstetric practice.

 

December 2015
Ori Segal MD, Joseph R. Ferencz MD, Michael Mimouni MD, Ronit Nesher MD, Perri Cohen MA and Arie Y. Nemet MD
 

Background: Reports of lamellar macular holes (LMHs) with underlying age-related macular degeneration (AMD) are rare and the specific definition, pathogenesis, and surgical recommendations for this macular condition remain unclear.


Objectives: To present a series of LMHs in eyes with underlying end-stage AMD, and describe optical coherence tomography (OCT) detection of associated morphologic abnormalities.


Methods: We reviewed the files of consecutive patients diagnosed with LMH and underlying end-stage AMD between September 2007 and September 2011. 


Results: Sixteen eyes of 14 patients were included in this study. The average follow-up after the OCT-established diagnosis of LMH was 19.8 months (range 4–48). The average visual acuity (VA) at last follow-up visit was 20/400 (20/60–20/1200). The best-corrected VA was stable in 10 eyes (62.5%) and deteriorated in 6 (37.5%). There was a statistically significant correlation between VA and minimal foveal thickness (r = -0.598, P = 0.014).


Conclusions: In this series of LMHs with underlying AMD the OCT findings were intraretinal fluid, cystic spaces and window defect.


 
Orly Goitein MD, Elio Di Segni MD, Yael Eshet MD, Victor Guetta MD, Amit Segev MD, Eyal Nahum MD, Ehud Raanani MD, Eli Konen MD and Ashraf Hamdan MD

Background: Trans-catheter valve implantation (TAVI) is a non-surgical alternative for patients with severe aortic stenosis (AS). Pre-procedural computed tomography angiography (CTA) allows accurate “road mapping,” aortic annulus sizing and the detection of incidental findings.

Objectives: To document the prevalence of non-valvular extra-cardiac findings on CTA prior to TAVI and the impact of these findings on the procedure.  

Methods: Ninety AS patients underwent CTA as part of pre-TAVI planning. Scans extended from the clavicles to the groin. Non-vascular non-valvular findings were documented and graded as follows: (A) significant findings causing TAVI cancellation or postponement, (B) significant findings leading to a change in the TAVI procedure approach, (C) non-significant findings not affecting the TAVI procedure. 

Results: TAVI was planned for 90 patients; their average age was 80.2 ± 7.5 years, 53% were females. Overall, non-valvular cardiac, extra-cardiac and extra-vascular significant and non-significant incidental findings were documented in 97% of scans (87/90). Significant pathologies causing TAVI cancellation or postponement (category A) were documented in 8%. Significant findings affecting the TAVI procedure (category B) were found in 16% of patients. 

Conclusions: Pre-TAVI CTA detected non-valvular extra-vascular pathologies leading to procedure cancellation/postponement or procedure modification in 8% and 16%, respectively. Comprehensive CTA evaluation that acknowledges the importance of such findings is of major importance since it might alter the TAVI procedure or even render it inappropriate. 

 

October 2015
David Goitein MD, Alex Zendel MD, Lior Segev MD, Anya Feigin MD and Douglas Zippel MD

Background: Obesity causes specific sexual problems, including diminished sexual desire, poor performance and avoidance of sexual encounters.

Objectives: To systematically evaluate the effect of bariatric surgery on patients' sexual function as compared to their preoperative status.

Methods: Bariatric surgery candidates were given a validated sexual function questionnaire the day before surgery and again 1 year after surgery. Females were polled with the Female Sexual Function Index (FSFI) and males with the Brief Sexual Function Inventory (BSFI). Statistical analysis was performed to elucidate differences in response to the questionnaires.

Results: The study population included 34 females and 14 males. Mean age and body mass index (BMI) were 40.2 ± 10.2 years and 43.4 ± 5.3 kg/m2, respectively. Postoperative BMI was 31.4 ± 4.9 kg/m2 (P < 0.001). Laparoscopic sleeve gastrectomy was performed in 36 patients and laparoscopic Roux-y gastric bypass in 12. In females, the FSFI index rose significantly from 24 to 30 (P = 0.006), indicating increased sexual performance and satisfaction. In males the BSFI increased from 40.2 to 43.9 but did not reach statistical significance (P = 0.08). However, general satisfaction, desire and erection were each significantly improved within the BSFI.

Conclusions: In addition to the well-documented medical and quality-of-life benefits of bariatric surgery, there is also clear improvement in patients' sexual function, both physical and psychosexual.

 

August 2015
Pnina Shitrit MD, Michal Openhaim MD, Sharon Reisfeld MD, Yossi Paitan PhD, Gili Regev-Yochay MD, Yehuda Carmeli MD and Michal Chowers MD

Background: Isolation of methicillin-resistant Staphylococcus aureus (MRSA) in healthy individuals is not common in Israel. In our hospital, about 30% of MRSA isolates were SCCmec types IV and V.

Objectives: To identify the demographic and clinical characteristics of patients carrying MRSA SCCmec type IV or V, and to compare them with each other and with those of patients with SCCmec types I-III.

Methods: We conducted a case-control study that included 501 patients from whom MRSA was isolated: 254 with SCCmec type I, II, or III, and 243 isolates from SCCmec types IV or V. 

Results: MRSA was isolated from surveillance cultures in 75% of patients and from a clinical site in 25%. The majority of our study population was elderly, from nursing homes, and with extensive exposure to health care. First, we compared characteristics of patients identified through screening. Statistically significant predictors of SCCmec V vs. IV were Arab ethnicity (OR 7.44, 95%CI 1.5–37.9) and hospitalization in the year prior to study inclusion (OR 5.7, 95%CI 1.9–16.9). No differences were found between patients with SCCmec types I-III and patients with SCCmec type IV or V. Analysis of the subset of patients who had clinical cultures yielded similar results. 

Conclusions: SCCmec types IV and V were common in the hospital setting although rare in the community. It seems that in Israel, SCCmec IV and V are predominantly health care-associated MRSA. 

 

Keren Mahlab-Guri MD, Ilan Asher MD, Tanir Allweis MD, Judith Diment MD, Zev M. Sthoeger MD and Eliezer Mavor MD

Background: Granulomatous lobular mastitis (GLM) is a rare disorder that can clinically mimic breast carcinoma. The recommendation for diagnosis and treatment of GLM has not yet been established. 

Objectives: To assess a series of GLM patients, including their clinical presentation, diagnosis, treatment and outcome. 

Methods: We retrospectively analyzed the clinical data and treatment of 17 female patients with biopsy-proven GLM. Breast tissue was obtained by a core needle biopsy (15 patients) or open biopsy (2 patients). Images were reviewed by an experienced radiologist.

Results: The mean age of the patients at diagnosis was 44.6 ± 12.6 years. Five patients (29%) presented with bilateral disease, and seven (41%) presented with a mass, suggesting the initial diagnosis of breast carcinoma. Treatment comprised observation alone (23%), antibiotics (58.8%) and/or corticosteroids (with or without methotrexate) (35%). At the end of the study 70.6% of the patients demonstrated complete remission. None of the patients developed any systemic (granulomatous) disease or breast carcinoma during the follow-up period (4.7 ± 3.8 years). 

Conclusions: Core needle biopsy is mandatory for the diagnosis of GLM and the exclusion of breast carcinoma. The recommended treatment modalities are observation alone or corticosteroids; surgery should be avoided. GLM is a benign disease with a high rate of resolution and complete remission.

 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel
ניתן להשתמש בחצי המקלדת בכדי לנווט בין כפתורי הרכיב
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime