Transient Bilateral Cortical Blindness in an Adult after an Acute Episode of Asthma Exacerbation

Eli Rosen MD, Yair Schindel MD, Shachar Shapira MD and Alex Khemlin MD
Medical Corps, Israel Defense Forces Navy, Haifa, Israel

Key words: cortical blindness, asthma, hypoxemia, posterior cerebral artery

Cortical blindness is a clinical syndrome characterized by loss of vision, normal pupillary response and normal fundoscopic examination. It is a complication mainly described in infants and children and occurs after various hypoxic events, such as asphyxia, infections, surgery, hypoxemia, etc. Common etiologies in young adults include preeclampsia/eclampsia, migraine, epilepsy and post-traumatic conditions (Table 1).

The cortical blindness phenomenon is usually accompanied by other serious neurologic deficits. Only a few cases have been described as a post-asthma attack. We report a case of acute transient bilateral cortical blindness as a solitary neurologic defect due to hypoxemia in a woman after a severe asthmatic episode and respiratory failure. We discuss the differential diagnosis of asthma and visual loss, and examine the cortical blindness phenomenon and its possible pathophysiology, as well as imaging and prognosis.

Table 1. Etiologic classification of cortical blindness

<table>
<thead>
<tr>
<th>Obstetric</th>
<th>Eclampsia</th>
<th>Preeclampsia</th>
<th>HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count)</th>
<th>Pregnancy toxemia</th>
<th>Postpartum posterior leukoencephalopathy syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric</td>
<td>Perinatal hypoxia (hypoxic encephalopathy)</td>
<td>Infectious</td>
<td>Meningitis</td>
<td>Encephalitis</td>
<td>Hydrocephalus</td>
</tr>
<tr>
<td>Vasculitic</td>
<td>Henoch-Schönlein purpura</td>
<td>Chung-Strauss syndrome</td>
<td>Cerebral angiitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td>Head trauma</td>
<td>Cervical trauma</td>
<td>Parietal contusion and transient superior sagittal sinus occlusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic</td>
<td>Stroke</td>
<td>Cardioembolic event (bilateral posterior cerebral artery distribution)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antiphospholipid antibodies syndrome
Migraine

Iatrogenic
Post-aortic arch surgery
Post-cardiac catheterization or coronary artery bypass graft
Post-angiography, arteriography
Post-cardioventricular pacing

Toxic
Heroin
Cyclosporin A
Snake bite
Vindesine
Gastrografin

Elevated intracranial pressure
Intracranial hemorrhage
Brain tumor

Miscellaneous
Creutzfeldt-Jakob disease
Liver cirrhosis and encephalopathy
Acute glomerulonephritis
Cerebral malaria
Acute intermittent porphyria

Patient Description
A 19 year old female with a history of bronchial asthma since childhood arrived at our clinic in progressive respiratory distress due to asthma exacerbation. Shortly after her arrival she became unconscious. Initial resuscitative treatment was given, including ventilation via an endotracheal tube, oxygen supplement, intravenous glucocorticosteroids and adrenaline. She was transferred to the hospital.

At the hospital (35 minutes after beginning our treatment) she was treated with intravenous glucocorticosteroids and magnesium. Initial arterial blood gases and pH showed: pO₂ 182 mmHg, PCO₂ 64.5 mmHg, and pH 7.17. Several hours after admission the patient regained consciousness, was extubated and her arterial blood gases returned to normal (pO₂ 377 mmHg, pCO₂ 38.4 mmHg, and pH 7.39).

She complained of loss of vision, and examination revealed severe bilateral visual impairment (inability to follow light or other objects). No other neurologic deficits were evident. Pupillary reflexes and funduscopic examinations were normal, as was a computerized tomography scan. A diagnosis of bilateral cortical blindness was made.

During the next few days her vision improved gradually. The patient was discharged 5 days later with normal vision and good respiratory function.

Comment
Status asthmaticus increases the risk of neurologic complications induced by hypoxia because of the high susceptibility of central nervous system cells to oxygen deficit. Visual injury is also described in this context.

A few entities in the differential diagnosis of visual loss and acute asthma not induced by hypoxia were all ruled out. These include:

- Reversible or permanent monocular blind-ness, as a rare systemic vasculitic
complication of Chung-Strauss syndrome
- Valsalva hemorhagic retinopathy, explained by a sharp rise in intrathoracic/intraabdominal pressure against a closed glottis transmitted to the eye causing a rupture of superficial retinal capillaries
- Anterior ischemic optic neuropathy, partially related to hypoxia, that occurs when low oxygen pressure induces vasospasm of the optic nerve arteries.

The pathophysiology of CB is hypoxia of the visual pathways at the territories supplied by the distal posterior cerebral arteries. The possibility that vascular factors (a limited capability of the posterior vascular system to autoregulate blood flow) rather than cortical tissue vulnerability are responsible for the hypoxic affect on the visual cortex was investigated in a few studies on cerebral hemodynamics. Decreased compensatory dilation response of the basilar artery system to occlusion of the carotid system was demonstrated in the dog electromagnetic flow-meter study during hypoxia and hypercapnea (but not during normocapnea [1]). Another study described brain CT scan findings in the persistent vegetative state. The most common vascular brain infarctions occurred at border zones and in the posterior cerebral artery territory.

The latest information on cerebral hemodynamics was obtained from an ultrasonographic study on fetal brain circulation, which demonstrated a sparing effect in the anterior cerebral artery under chronic hypoxia. This suggests that the frontal lobes are spared longer than the lateral and occipital regions [2].

Several methods of imaging are used to assess the extent of damage and prognosis, but there is no widely accepted laboratory or imaging finding with a significant positive predictive value for the visual outcome.

Whereas visual evoked potentials and electroencephalography are used as prognostic tools in cases of cortical blindness in infants and children, the most common neuroimaging modalities used in young adults are computed CT and magnetic resonance imaging. CT scans performed during the first 24 hours showed low density areas in the bilateral occipital lobes, suggesting cerebral edema formation [3]. Abnormality in the striate and parastriate cortices was associated with poor outcome. Xenon/CT cerebral blood flow measurement in a patient with cortical blindness due to eclampsia showed decreased local blood flow in the area of the posterior cerebral arteries [3].

Although it is sometimes difficult to use MRI to diagnose cortical blindness at the acute stage, several studies demonstrated abnormal T2-hyperintensity signals in the bilateral occipital lobes, mainly in the white matter [3,4]. Recovery of vision was accompanied by complete resolution of the radiologic abnormalities, both in CT and MRI follow-up imaging studies. Significant hypometabolism in the visual and parieto-occipital cortices was found in positron emission tomography studies during the acute phase [5]. The cerebral metabolic rate of glucose recovered almost completely with the recovery of vision.

Recovery time from cortical blindness varies from several days to 3 years and is not influenced by the extent of the damage. Younger age is associated with poor prognosis. Even though the infant brain has greater regenerative potential than the adult brain, the visual cortex lacks plasticity, resulting in greater damage.

Cortical blindness, as in our patient, is scarce as a solitary neurologic complication, especially in adults. The pathophysiology is not clear, although abnormal vascular autoregulation of posterior cerebral artery blood flow under certain circumstances is currently the preferred theory. Neither laboratory nor imaging scans are accepted as reliable prognostic tools.

References

Correspondence: Dr E. Rosen, 15 Arlozorov Street, Hadera 38222, Israel.
Phone: (972-4) 954-0366/5
Email: elico_rosen13@myway.com.

Capsule

Tuberculosis and the proteasome

The proteasome - a protein complex involved in degrading specific target proteins - is essential in eukaryotes, but a functional role in Archaea and the Actinomycetes family of eu-bacteria has not been clear. In a global search for pathogen genes involved in resistance to NO-mediated host-cell killing, Darwin et al. now show that in the Actinomycete, Mycobacterium tuberculosis (Mtb), the proteasome plays an essential role. Both genetic inactivation of proteasome-related accessory proteins and inhibition of the proteolytic core with chemicals markedly sensitized Mtb to NO-dependent killing. Furthermore, Mtb mutated in a proteasome-related gene was markedly less pathogenic in mice.

Science 2003;302:1963
E. Israeli