The role of computerized tomographic scanning in the diagnosis of bacterial endocarditis is not yet defined. We describe here a patient with Candida albicans endocarditis who presented with fever and left flank pain without significant heart murmurs, in whom the diagnosis of infective endocarditis was suggested by CT imaging.

Patient Description
A 70 year old demented man presented with fever (up to 39°C) and left abdominal pain. The patient had a permanent cystosostomy catheter. Ten days earlier he was discharged from another department after prolonged hospitalization for urosepsis treated with antibiotics. On physical examination the patient was pale with temperature of 38.9°C. He had normal breath sounds and a minimal (1/6) systolic apical murmur. There was mild tenderness on the left flank without hepatosplenomegaly. His chest X-ray was normal. Laboratory evaluation revealed normocytic anemia (9.2 g/dl), leukocytosis of 21,800/mm³, elevated erythrocyte sedimentation rate (75 mm/hour) and high levels of C-reactive protein (150 mg/L, normal < 8). Renal and liver function tests were normal. Since the patient had a recent history of urosepsis and his major complaints were fever and left flank pain, urine and blood cultures were taken and CT with intravenous contrast media injection was performed. Two hypodense areas were demonstrated in the spleen (not the classical wedge shape), suggesting splenic infarcts or splenic abscesses [Figure A]. His chest CT showed a huge filling defect in the left atrium [Figure B]. Several blood cultures revealed candidemia (Candida albicans). Transthoracic echocardiography demonstrated a large mitral valve vegetation, confirming the CT finding. The imaging (CT scan, TTE) and laboratory (blood cultures) tests established the diagnosis of candidial endocarditis causing splenic emboli or splenic abscesses. The patient and his family refused surgery and despite prolonged intravenous treatment with amphotericin B the patient died after 4 weeks.

Comment
Fungal endocarditis is an uncommon disease with a prevalence of about 1% of all cases diagnosed with infective endocarditis [1]. Altogether, 152 cases of fungal endocarditis were reported in the English language literature between 1 January 1995 and 30 June 2000 [2]. The median age of patients (44 years) was relatively young. Drug addiction with intravenous injection was reported as a risk factor in only 4.1% of cases. Other factors, including underlying cardiac abnormalities (47.3%), prosthetic valves (44.6%) and central venous catheters (30.4%), were more commonly identified as predisposing conditions for fungal endocarditis, reflecting the changing epidemiology of this syndrome [2]. Candida albicans and Aspergillus sp. are the most common isolated pathogens [3]. Fungal endocarditis typically generates large as well as long vegetations that can frequently lead to embolization (33–83%) toward the brain or other organs [4].

Echocardiography has a central role in the diagnosis of infective endocarditis and should be performed in all patients suspected of having endocarditis. Transesophageal echocardiography is more sensitive than TTE for the diagnosis of endocarditis. However, because of the high cost and invasive nature of TEE, it may be more cost-effective to perform TTE first and only if the TTE is technically inadequate or in the case of high clinical suspicion despite a negative TTE should TEE be done [4]. The role of other
Surgical treatment is required in most cases because medical therapy for endocarditis caused by Candida species and other fungi is unsuccessful [5]. The optimal time to perform surgery is before hemodynamic disability develops or the infection extends to perivalvular tissue. In some patients, like the one presented here with splenic involvement, the presence of metastatic infected emboli may need to be assessed before valve replacement surgery in order to avoid relapse of the fungal infection on the prosthetic valve seeded by the metastatic infected sites [5].

The case described here highlights the potential role of CT imaging in the diagnosis of infective endocarditis, especially in patients with large vegetations without heart murmurs.

References

Correspondence: Dr Z.M Sthoeger, Head, Dept of Medicine B, Kaplan Medical Center, Rehovot 76100, Israel. Phone (972-8) 944-1403 Fax (972-8) 944-1826 email: zev_s@clalit.org.il

Capsule

Management of miscarriage

Trinder et al. tried to ascertain whether a clinically important difference exists in the incidence of gynecologic infection between surgical management and expectant or medical management of miscarriage. The authors performed a randomized controlled trial comparing medical and expectant management with surgical management of first-trimester miscarriage at seven hospitals in the United Kingdom. The participants were women as less than 13 weeks gestation with a diagnosis of early fetal demise or incomplete miscarriage. The interventions were expectant management (no specific intervention); medical management (vaginal dose of misoprostol preceded, for women with early fetal demise, by oral mifepristone 24–48 hours earlier); surgical management (surgical evacuation). Main outcome measures were confirmed gynecologic infection at 14 days and 8 weeks; need for unplanned admission or surgical intervention. Altogether, 1200 women were recruited: 399 to expectant management, 398 to medical management, and 403 to surgical management. No differences were found in the incidence of confirmed infection within 14 days between the expectant group (3%) and the surgical group (3%) or between the medical group (2%) and the surgical group. Compared with the surgical group, the number of unplanned hospital admissions was significantly higher in both the expectant group (risk difference -41%, -47% to -36%) and the medical group (-10%, -15% to -6%). Similarly, when compared with the surgical group, the number of women who had an unplanned surgical curettage was significantly higher in the expectant group (risk difference -39%, -44% to -34%) and the medical group (-30%, -35% to -25%). The authors conclude that the incidence of gynecologic infection after surgical, expectant, and medical management of first-trimester miscarriage is low (2%–3%), and no evidence exists of a difference by the method of management. However, significantly more unplanned admissions and unplanned surgical curettage occurred after expectant management and medical management than after surgical management.

Br Med J 2006;332:1235
Eitan Israeli