Antiphospholipid Syndrome and Antiphospholipid Antibodies in Children: The Two Sides of the Coin

Cecilia Nalli MD¹, Silvia Piantoni MD¹, Laura Andreoli MD¹, Mario Motta MD² and Angela Tincani MD¹

¹Department of Rheumatology and Clinical Immunology, Spedali Civili and University of Brescia, Brescia, Italy
²Department of Neonatology and Neonatal Intensive Care Unit, Spedali Civili, Brescia, Italy

KEY WORDS: antiphospholipid syndrome (APS), pediatric thrombosis, antiphospholipid antibodies (aPL), anti-beta2-glycoprotein antibodies, anti-domain antibodies

The antiphospholipid syndrome is considered the most common acquired hypercoagulation state of autoimmune etiology, being clinical hallmarks in adult arterial and/or venous thrombosis and recurrent pregnancy loss [1]. APS may also affect younger patients, as estimated in a large cohort of 1000 European patients in 2.8% of whom the disease onset occurred before age 15 [2]. There are actually two different modalities: APS presenting in children as a passively acquired autoimmune from the mother or as a de novo synthesis of antiphospholipid antibodies that leads to clinical manifestations.

Neonatal APS is a rare clinical entity characterized by passively acquired maternal antiphospholipid antibodies and thrombosis. Sixteen cases of perinatal thrombosis have been described so far [3]; in most of them additional risk factors were present (asphyxia, sepsis, arterial or venous catheter, congenital thrombophilia), modulating the thrombophyllic action of aPL. Therefore, although maternal aPL do not seem sufficient to determine thrombosis in the neonate, it is recommended that aPL be checked in children born to mothers with these auto-antibodies, especially in the presence of concomitant risk factors. With this aim, the need for a neonate-specific cutoff for aPL was addressed, and evaluation of anticardiolipin and anti-β2 glycoprotein I was performed in a large group of healthy newborn cord sera [4].

On the other hand, older children with a mature immune system may produce aPL and develop clinical manifestations resembling those of adult patients [5]. However, there are many differences between pediatric and adult APS, such as the absence of traditional acquired risk factors for thrombosis (smoking, obesity, use of contraceptives, etc.) and the absence of pregnancy-related morbidity. The APS in children should still be placed in the frame of systemic autoimmunity, with careful evaluation of other concomitant diseases, mostly systemic lupus erythematosus, where the presence of aPL may be associated with significant organ damage and, consequently, poorer outcome [6]. In fact, primary APS in a pediatric population may be as frequent as APS associated with SLE (Ped-APS Registry, a collaborative project of the European aPL Forum) [7], but, even if no signs or symptoms of SLE are present at disease onset, APS may be a forerunner of SLE and therefore children should be closely monitored [7].

In this issue of *IMAJ*, Zamora-Ustaran and colleagues [8] report their experience with pediatric APS in 32 Mexican children [8]. Supporting the hypothesis of an intimate connection between APS and SLE in children, the authors did not find any significant difference in clinical manifestations between primary APS and SLE with APS. Hematological (Evans syndrome, thrombocytopenia and hemolytic anemia), neurological (epilepsy, migraine) and skin disorders (Raynaud’s phenomenon and skin ulcers) were the most common non-thrombotic clinical manifestations, in agreement with the finding of the Ped-APS Registry. Interestingly, the prevalence of these manifestations is higher in the pediatric population as compared to adult APS. For instance, frequency of small vessel thrombosis is much higher in APS children than in adult APS patients [2]. Interestingly, this frequency is higher in Mexican children (44%) than in the European Ped-APS Registry (6%).

The interpretation of aPL in children becomes more difficult when there is no clinical event, such as thrombosis or other typical manifestations, or no previous diagnosis of a systemic autoimmune disease. In fact, it is well established how aPL may arise as a consequence of infections. Several studies demonstrated that viral and bacterial infections are able to induce the synthesis of aPL [9,10]. Infection-related aPL is usually transient and disappears within 2 or 3 months, otherwise these antibodies may become persistent, raising the question whether infections may be the major trigger for the development of aPL in autoimmune diseases [10]. In some cases, post-infectious aPL may become truly pathogenic and contribute to thrombotic events [9,10]. Interestingly, a remarkable similarity of aPL specificity was demonstrated in patients with parvovirus B19 infection and in patients with SLE [11].

If we consider that childhood is the period when the immune system is mostly

aPL = antiphospholipid antibodies
SLE = systemic lupus erythematosus
challenged by infections, we would expect a greater predisposition of children to produce aPL. Therefore, a critical issue is to identify cutoff values for aPL tests that are specific for the pediatric population. A Mexican study calculated pediatric cutoffs for aCL and anti-β2GPI as the 95th and 99th percentile in a cohort of 360 healthy children [12]. An Italian group addressed this problem by studying immunoglobulin G, M and A aCL levels in healthy children, demonstrating that G, M and A aCL levels in healthy children, without any sign or symptom suggestive of APS or other systemic autoimmune disease, may raise the hypothesis that these antibodies carry a different pathogenic potential from those aPL of patients with definite APS. The presence of aPL in apparently healthy children, without any sign or symptom suggestive of APS or other systemic autoimmune disease, may raise the hypothesis that these antibodies carry a different pathogenic potential from those aPL of patients with definite APS. The dissection of the fine specificity of anti-β2GPI has indeed brought many interesting considerations. β2GPI is a single-chain protein composed of five repeated sequences (domains). Domain 5 (D5) is critical for binding to anionic phospholipid membranes, while domain 1 (D1) projects into the extracellular space and can interact with other proteins/antibodies. Anti-D1 antibodies seem to be associated with thrombotic events and therefore to be more specific for APS patients who generally carry anti-D1 [20].

A novel synthesis of anti-β2GPI in healthy children seems to be a common event, probably due to the exposure to infections, vaccines or nutritional exposure to β2GPI after weaning. The fine specificity of these antibodies, preferentially directed to domain 4/5 and different from that of APS patients, could account for their “not pathological” profile from the clinical point of view. In conclusion, the interpretation of aPL antibodies in children has multiple faces. In the presence of a clinical event such as thrombosis, the presence of aPL may be indicative of an autoimmune disorder, and the performance of an extended panel of autoantibodies may be recommended for better classification and stratification of the patient’s prognosis. In fact, testing for all the aPL tests included in the classification criteria (lupus anticoagulant, aCL, anti-β2GPI) may be strongly suggested in children as in adult patients [21]. The search for other autoantibodies (antinuclear, anti-DNA, etc.) and specific clinical manifestations may switch the diagnosis toward SLE, bearing in mind that APS may be the forerunner in 30% of the cases [7]. The other side of the coin is the interpretation of aPL in apparently healthy children. These antibodies are generally ‘non-pathogenic’ and transient, as a consequence of environmental factors. Novel diagnostic tools that are able to identify the fine specificity of anti-β2GPI may be valuable in confirming the ‘not pathological’ nature of the antibodies or to shift the attention toward an ‘autoimmune’ setting.

Acknowledgments
Dr. Andreoli is supported by a Research Grant financed by an agreement between the Government of Lombardy and the University of Brescia (”Dote Ricercatore e Dote Ricerca Applicata ai sensi dell’accordo regionale per lo sviluppo del capitale umano nel sistema universitario Lombardo sottoscritto tra Regione Lombardia e Università Lombardie il 20-10-2009, Università degli Studi di Brescia”).

Corresponding author:
Dr. A. Tincani
Dept. of Rheumatology and Clinical Immunology, Spedali Civili and University of Brescia, Piazzale Spedali Civili, 1 25123 Brescia, Italy
Phone: (39-030) 399-5487
Fax: (39-030) 399-5085
e-mail: tincani@bresciaimmunologia.it

References
A whole genome methylation analysis of systemic lupus erythematosus

Hypomethylation of the interleukin (IL)10 and IL1R2 promoters is associated with disease activity interaction of genetic and environmental factors. Investigations have shown that environmentally driven epigenetic changes contribute to the etiology of SLE. Lin and co-authors hypothesize that aberrant DNA methylation may contribute to the activation of the immune machinery and trigger lupus disease activity. A whole-genome methylation array was applied to investigate the DNA methylation changes between 12 pairs of active systemic lupus erythematosus (SLE) patients and healthy controls. The results were further confirmed in 66 SLE patients and 102 healthy controls. The methylation statuses of the IL10 and IL1R2 genes were significantly reduced in the SLE patient samples relative to the healthy controls (age-adjusted odds ratios, 64.2 and 16.9, respectively, \(P < 0.0001 \)). There was a trend toward SLE patients having hypomethylated IL10 and IL1R2 genes accompanied by greater disease activity. We observed that the methylation degree of IL10 and IL1R2 genes were reduced in the rheumatoid arthritis (RA) patients as well but the hypomethylation change was more significant in IL1R2 genes than in the IL10 genes in RA patients. This study demonstrated that DNA hypomethylation might be associated with SLE. Hypomethylated IL10 and IL1R2 genes may provide potential epigenetic markers as clinical predictors for autoimmune diseases.

Genes Immun 2012; 13: 214

Eitan Israeli

The *Shigella flexneri* effector Ospl deamidates UBC13 to dampen the inflammatory response

Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system. Therefore, bacteria must modulate host inflammatory signaling and dampen these alarm signals. How pathogens do this after invading epithelial cells remains unclear, however. Sanada et al. show that Ospl, a *Shigella flexneri* effector encoded by ORF1696 on the large plasmid and delivered by the type III secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)-mediated signaling pathway. Ospl is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing *S. flexneri* Ospl to modulate the diacylglycerol-CBM (CARD-BCL10-MALT1) complex-TRAF6-nuclear factor \(\kappa B \) signaling pathway. We determined the 2.0 \(\AA \) crystal structure of Ospl, which contains a putative cysteine-histidine-aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. These results suggest that *S. flexneri* inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13-TRAF6 complex.

Nature 2012; 483: 623

Eitan Israeli

“**It was in my heart to help a little because I was helped much**”