Urticaria: An Enigmatic but Manageable Illness

Avner Reshef MD

Angioedema Center, Allergy & Clinical Immunology Unit, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

KEY WORDS: urticaria, angioedema, Chronic Urticaria Quality-of-life Questionnaire (CU-Q2oL), immunoglobulin E, histamine, antihistamines, omalizumab

Urticaria, also known as hives and nettle rash, is a common skin disorder characterized by intensely pruritic wheals surrounded by erythema, often associated with subtaneous or submucosal swelling (angioedema). It is a prevalent condition, ranging from 0.3 to 11.3%. Lifetime prevalence rates of 8.8% have been reported, with 1.8% of cases regarded as chronic. It has been estimated that approximately 10–20% of the population will experience an episode of acute urticaria at some point in their lifetime [1-3].

The etiology of urticaria is currently obscure. In most patients even extensive laboratory workup and the best clinical wisdom fail to disclose the culprit. Diagnosis is based primarily on the typical physical findings. Investigations including blood counts, chemistry, autoantibodies, complement, parasite ova, allergy skin testing (i.e., for aeroallergens or foods) and laborious imaging techniques have a very low diagnostic yield. Determining thyroid function might be helpful, since approximately 20% of patients with chronic urticaria have antthyroid antibodies, compared to 6% in the general population [1].

For decades, theories regarding the etiology of urticaria have been proposed but none has proven credible enough to explain the typical clinical manifestations [4]. However, a sizeable subpopulation of patients (40%–45%) have demonstrable immunoglobulin G (IgG) autoimmune antibodies directed to the IgE-receptor α-subunit, with a more severe and difficult-to-treat course. This can be assessed by the autologous serum skin test (ASSST), which involves intradermal injection of the patient’s own serum. A positive weal-and-flare skin reaction or in vitro basophil histamine release assay (BRA) is considered indicative of circulating autoantibodies to the high-affinity IgE receptor on dermal mast cells or blood basophils [1-4]. Unfortunately, these data have no practical advantage in devising a treatment strategy. The non-autoimmune remaining 55%–60% of patients with ‘spontaneous urticaria’ are still considered to be ‘idiopathic’ in that there is very little insight as to the cause or pathogenesis [4].

Patients with chronic urticaria (CU) experience recurrent bouts of skin rash accompanied by an unbearable itch (believed to be histamine-mediated) with swollen and disfiguring lesions. The rash interferes with daily activities, affects sleep and concentration and causes embarrassment. Furthermore, unpredictable exacerbations and dependence on medications require a change of habits and lifestyle and induce anxiety, tension and irritability. Undoubtedly, urticaria takes its toll on patients’ quality of life and mental condition. The disfigurement and discomfort-associated CU often poses a serious challenge to the treating clinician, and long-term hardships for patients and their families [5]. A recent meta-analysis confirmed the association between psychological factors and chronic urticaria [6]. This meta-analysis shows a positive correlation between CU and markers of poor psychological wellness, indicating that psychotherapeutic treatments and behavioral interventions may prove beneficial.

Treating chronic urticaria is extremely frustrating for most practicing physicians. Except for the second-generation non-sedating antihistamines, the major achievements in the last few decades were an improved classification of the clinical phenotypes, the provision of safer symptomatic treatments, and avoidance of long-term corticosteroid use. Very recently, however, immunomodulating and disease-modifying drugs (i.e., cyclosporine, methotrexate, mycophenolate, omalizumab) have been offered for chronic refractory cases [1]. In a recent meta-analysis omalizumab (Xolair®, Genentech, Inc. and Novartis Pharmaceuticals Corporation, USA) was found to be safe and efficacious in seven randomized controlled studies comprising 1312 patients with CSU, as compared to placebo [7]. However, data on the duration of effective treatment with omalizumab, and head-to-head studies against conventional (and less expensive) therapy are not currently available.

In the last 25 years new clinical parameters and evaluation instruments were developed to assess the impact of urticaria on quality of life (QoL) and subjective outcomes that can be recorded by the patients [8]. Suggested patient-reported outcomes (PROs) in urticaria refer to general health-related reports, such as illness perception, health-related quality of life (HRQoL), symptom severity, disease activity scores, satisfaction, wellbeing, perceived disease control, etc. Nonetheless, PROs are already integrated in clinical research and are used by regulatory bodies due to their relevance in the overall assessment of treatment efficacy. They can also provide clinically important endpoints for research and disease management plans.

In light of this, the efforts of Kessel and team [9] in adopting and validating a Hebrew version of the Chronic Urticaria Quality-of-life Questionnaire (CU-Q2oL) are to be commended. This questionnaire, originally developed and validated in Italy
by Biardini et al. [10,11], has undergone validation and cross-cultural confirmation and was already introduced into clinical practice in other countries (Germany, Spain, Turkey and Poland). Despite the limitations of the study (i.e., small sample group, short follow-up period), Kessel et al. have demonstrated that the Israeli version of the CU-Q2oL is a reliable and valid instrument and can be used to assess chronic urticaria patients.

It is hoped that despite its enigmatic mechanism and lack of a definitive panacea, urticaria will be better managed in Israel by using standardized tools that can guide physicians in follow-up and clinical decision making.

Correspondence
Dr. A. Reshef
Senior Expert Consultant, Angioedema Center, Allergy & Clinical Immunology Unit, Sheba Medical Center, Tel Hashomer 52621, Israel
Fax: (972-3) 530-5356
email: areshef@sheba.health.gov.il

References

Capsule

Tuft cells help contain parasites

Trillions of microbes inhabit our guts, including worms and other parasites. Epithelial cells that line the gut orchestrate parasite-targeted immune responses. Howitt and co-authors identified a key cellular player in immunity to parasites: tuft cells. Tuft cells make up a small fraction of gut epithelial cells but expand when parasites colonize or infect the gut. Parasites cause tuft cells to secrete large amounts of interleukin-25, a key cytokine for parasite clearance that also indirectly feeds back on tuft cells to expand their numbers. Tuft cells express chemosensory signaling machinery: disrupting this blocked parasite-triggered tuft cell expansion and weakened the ability of mice to control a parasitic infection.

Science 2016; 351: 1329
Eitan Israeli

Capsule

Vitamin D status during pregnancy and risk of multiple sclerosis in offspring of women in the Finnish Maternity Cohort

Vitamin D has been associated with a decreased risk of multiple sclerosis (MS) in adulthood; however, some, but not all, previous studies have suggested that in utero vitamin D exposure may be a risk factor for MS later in life. Munger et al. questioned whether serum 25-hydroxyvitamin D (25(OH)D) levels in early pregnancy are associated with risk of MS in offspring. They measured maternal serum 25(OH)D levels with a chemiluminescence assay. The risk of MS among offspring was nearly twofold increased risk of MS in the offspring (relative risk 1.90; 95%CI 1.20–3.01, P = 0.006) compared with women who did not have deficient 25(OH)D levels. There was no statistically significant association between the risk of MS and increasing serum 25(OH)D levels (P = 0.12). The authors concluded that insufficient maternal 25(OH)D during pregnancy may increase the risk of MS in offspring.

JAMA Neurol 2016. doi:10.1001/jamaneurol.2015.4800
Eitan Israeli