Fulminant HHV-8 Associated Castleman’s Disease in a Non-HIV, Kaposi Sarcoma Patient with Borderline Hemophagocytic Syndrome

Irena Barbarov MD, Maya Koren-Michowitz MD, Ginette Schiby MD, Orith Portnoy MD, David Livingstone MD and Gad Segal MD

Departments of Internal Medicine, Hematology, Pathology, and Diagnostic Imaging, and Intensive Care Unit, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

KEY WORDS: Castleman’s disease, Kaposi sarcoma, human herpes virus 8 (HHV-8), fever of unknown origin (FUO)

The ability to establish the etiology of fever of unknown origin (FUO) during the first days in hospital is still lacking. This is related, in part, to the fact that both serologic test results and pathologic diagnoses are far from being immediate. In the following case presentation, the combination of the patient’s history, clinical course, serologic test results and pathology findings led to the clinical diagnosis, which, unfortunately, still did not help save the life of our patient.

PATIENT DESCRIPTION

A 59 year old male, Jewish of Persian descent, was admitted to our department due to fever as high as 38.4°C over 3 weeks. The fever was accompanied by shortness of breath, non-productive cough and night sweats. Upon admission, his history suggested that the febrile disease began soon after a dental procedure. Also, prior to admission, the patient had been taking antibiotics for suspected community-acquired pneumonia (sequential amoxicillin, cefuroxime and even ceftriaxone were given in an ambulatory setting) without resolution of his febrile illness. While still in an ambulatory setting, a chest computed tomography (CT) scan was performed, which showed generalized lymphadenopathy, splenomegaly and bilateral pleural effusions. Three days prior to hospitalization bipedal edema appeared and general symptoms of weakness became worse, including fatigue, anorexia, dizziness and orthostatic reactions.

The patient’s past medical history included untreated Kaposi sarcoma diagnosed 1 year prior to the current hospitalization. Kaposi sarcoma was diagnosed by a biopsy taken from a pigmented lesion on the patient’s foot, found to be positive for human herpes virus 8 (HHV-8). Several subsequent serologic tests for human immunodeficiency virus (HIV) were negative. On admission the patient looked exhausted. Physical findings included enlarged, non-tender, firm lymph nodes at both the submandibular area and bilateral neck triangles. Bipedal edema was significant and there were no signs of endocarditis.

Based on the initial impression of an association between the patient’s dental surgery and febrile disease, an FUO workup was initiated aimed at eliminating the possibility of endocarditis. Initial laboratory results demonstrated microcytic hypochromic anemia (hemoglobin concentration 8.5 g/dl, mean corpuscular volume 78 fl), kidney injury (serum creatinine 1.39 mg/dl and serum urea 47 mg/dl), and an anomaly on liver function test [both aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were moderately increased, 127 IU/L and 106 IU/L, respectively, and blood albumin was significantly low, 2.5 g/dl]. Lactate dehydrogenase (LDH) levels were within the normal range (186 IU/L). Multiple blood cultures were negative for bacteria, even after a long period of incubation. Virology workup included serologic tests for HIV, cytomegalovirus and Epstein-Barr virus, and all were negative for acute infection. Initial screening for autoimmunity was also negative [including tests for antinuclear antibody (ANA), cytoplasmic antineutrophil cytoplasmic antibodies (c-ANCA) and perinuclear ANCA (p-ANCA)].

In parallel to our attempts to rule out infection, studies were conducted to eliminate the viable possibility of hematologic malignancy (these efforts were accelerated after a repeat history taking revealed that the fever was already present prior to the dental surgery): chest and abdominal CT scan were performed [Figure 1]. Both cervical lymph node and bone marrow biopsies were performed. Initial pathologic results of the lymph node did not show signs of malignancy, and the bone marrow demonstrated polymorphic, three-lineage hyperplasia with approximately 10% plasma cells infiltrate and no evidence of hemophagocytosis.

A few days after hospitalization the patient’s condition deteriorated: fever exceeded 39°C and was accompanied by severe rigors. Progressive pancytopenia appeared with deterioration of kidney and liver function tests. During that time, empiric antibiotics were administered since the CT scan interpretation could not rule out a pulmonary alveolar infiltrate. Nevertheless, both ceftriaxone and doxicillin did not alter the course of disease and were soon stopped. The patient...
deteriorated further and adult respiratory distress syndrome developed. At this stage, with imminent respiratory failure, he was admitted to the intensive care unit (ICU).

Upon admission to the ICU invasive ventilation was initiated and the patient’s respiratory state was stabilized. The differential diagnosis at that time included hemophagocytic syndrome (HLH, hemophagocytic lympho-histiocytosis). This diagnosis, however, was not considered final and did not lead to an HLH-specific therapy, mainly because HLH criteria were only borderline for diagnosis and, in fact, some were abating. In that regard, ferritin level, which was initially 1181 ng/ml, decreased to 900 ng/ml; levels above 3000 ng/ml are more HLH-specific [1]. Blood count results were only borderline lower than the cutoff limit used for diagnosis. Finally, an alternative diagnosis that was consistent with the entire clinical and laboratory picture was determined by the final lymph node pathologic result which showed a variant of Castleman’s disease, with some plasmoblastic features demonstrating a very high burden of HHV-8 virions within the lymph node [Figure 2].

The patient was immediately started on high dose steroid and rituximab therapy. During his stay in the ICU, the patient was treated with the following combination: rituximab as treatment for Castleman’s disease, gancyclovir as an anti-viral anti-HHV-8 agent, wide-spectrum antibiotics for both gram-positive and negative bacteria, and amphoterin as an antifungal agent.

Due to acute kidney injury and despite low blood pressure, use of continuous venous-venous hemodialysis was initiated. During the following days, a profound liver injury developed: blood total bilirubin exceeded 48 mg/dl. Ultrasonography refuted intra- or extrahepatic bile duct obstruction, and CT scan ruled out portal and hepatic vein thrombosis. In the subsequent days numerous blood products were infused due to profound thrombocytopenia, and severe hepatic and renal failure. The patient died 28 days after hospitalization.

COMMENT

The patient died due to an aggressive lymphoproliferative disease with borderline characteristics of hemophagocytic syndrome against a background of an infection with HHV-8. The following cause and effect scheme is suggested: Chronic infection by HHV-8 is an established causative agent for Kaposi sarcoma [2], some variants of lymphoma [3] and variants of Castleman’s disease [3]. The relevant pathophysiology involves cytokine dysregulation by the presence of virions and subsequent proliferation of B lymphocytes infected by HHV-8. Accordingly, rituximab, a monoclonal antibody targeting B lymphocytes, was demonstrated to be effective, among other effects, in reducing the lymphadenopathy burden associated with diffuse Castleman’s disease. Castleman’s disease is characterized by diffuse lymphadenopathy (with angiofollicular hyperplasia within affected lymph nodes), hepatosplenomegaly and constitutional symptoms including fever, fatigue and weight loss. The coexistence of Castleman’s disease and Kaposi sarcoma occurs in up to 82% of Kaposi sarcoma patients [2]. The pace of disease development in multicentric Castleman’s disease is variable, and a rapidly progressive form that can lead to death within weeks was found to be more common in
HIV-infected patients [4]. The presence of both Kaposi’s sarcoma and HHV8+ multicentric Castleman’s disease in an HIV-negative patient is quite rare and suggests the presence of an underlying immune deficiency [5] which was not previously recognized in our patient.

CONCLUSION
Investigation of the FUO patient might transform from the urgent to the emergent. The present case signifies the possible hemophagocytic syndrome as a catastrophic event, culminating both infectious and malignant pathologies, even when not all diagnostic criteria are fulfilled.

Correspondence
Dr. G. Segal
Dept of Internal Medicine T, Sheba Medical Center. Tel Hashomer 52621, Israel
email: gad.segal@sheba.health.gov.il

References

Capsule
Ribosomes regulate stem cell fate
The use of stem cells in regenerative medicine holds enormous therapeutic potential. However, scientists still need to fully understand the molecular signals that control the ability of stem cells to self-renew and differentiate. To identify genes that may regulate this, Fortier and collaborators screened a library of mouse embryonic stem cells (ESCs) containing chromosomal deletions. They found that the loss of a single copy of several genes encoding protein subunits of the ribosome, a large protein complex that translates mRNA into proteins, resulted in impaired ESC differentiation but did not affect self-renewal.

Eitan Israeli

Capsule
Weaning means more than no more milk but also jump starts beta cells
Nursing mothers provide much needed nutrition to offspring, but the full effects of weaning on offspring’s physiology is unknown. Stolovich-Rain and team now show that in mice, weaning affects the function of insulin-producing beta cells in the pancreas. The ability of beta cells to regenerate after injury or to modulate their insulin secretion decreases with age. However, beta cells also regenerated poorly in response to injury in very young mice and only gained this function upon weaning. These results suggest that at least for mouse beta cells, weaning jump starts the cell cycle and modulates insulin production in response to glucose.

Curr Biol 2014; 24: 2733
Eitan Israeli

Capsule
LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes
Insulin resistance results from several pathophysiologic mechanisms, including chronic tissue inflammation and defective insulin signaling. Li et al. found that liver, muscle and adipose tissue exhibit higher levels of the chemotactic eicosanoid LTB4 in obese high fat diet (HFD)-fed mice. Inhibition of the LTB4 receptor Ltb4r1, through either genetic or pharmacologic loss of function, led to an anti-inflammatory phenotype with protection from insulin resistance and hepatic steatosis. In vitro treatment with LTB4 directly enhanced macrophage chemotaxis, stimulated inflammatory pathways, reduced insulin-stimulated glucose uptake in L6 myocytes, and impaired insulin-mediated suppression of hepatic glucose output in primary mouse hepatocytes. This was accompanied by lower insulin-stimulated Akt phosphorylation and higher Irs-1/2 serine phosphorylation, and all of these events were dependent on Gai and Jnk1, two downstream mediators of Ltb4r1 signaling. These observations elucidate a novel role of the LTB4-Ltb4r1 signaling pathway in hepatocyte and myocyte insulin resistance, and they show that in vivo inhibition of Ltb4r1 leads to robust insulin-sensitizing effects.

Eitan Israeli