Anti-*Saccharomyces cerevisiae* Autoantibodies and Autoimmune Diseases: the Sweet and Sour of Baking Yeast

Maurizio Rinaldi MD

Rheumatology, Allergology and Clinical Immunology, Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy

KEY WORDS: *Saccharomyces cerevisiae* autoantibodies (ASCAs), autoimmune diseases, molecular mimicry, atherosclerosis, vaccines

EXPOSURE TO MICROBIAL AGENTS AND AUTOIMMUNITY

The immune system is exposed to different antigens owing to the burden of microorganisms. Therefore, the microbial pattern of each subject is unique. This physiologic process allows only mildly self-binding lymphocytes to survive according to positive selection, whereas those interacting too tightly with immunogenic molecular structures are negatively selected through a pathway leading to programmed cell death. It is noteworthy that microbial agents can induce autoimmunity through four main mechanisms:

- Molecular mimicry (cross-reactivity due to overlapping molecular sequences)
- Epitope spreading, which is the detection of new epitopes that differ from the original shared sequence after an antigen has been processed and presented on the cell surface by antigen-presenting cells (APCs)
- Bystander activation, which is based on the release of sequestered antigens as a consequence of tissue damage especially by microbial injury
- Persistent activation of the immune response, as may well occur during viral spread [1].

The gut-associated lymphoid tissue (GALT) is the main localization site of the recently defined CD4+ Th17 lymphocytes that release interleukin-17 (IL-17), involved in the response to extracellular bacteria and fungal infections. Saprophytic microbial agents can ordinarily preserve the dynamic Th17 T regulatory (Treg) balance in GALT. Nonetheless, dysregulated IL-17 secretion drives immune mediated pathology, notably inflammatory bowel diseases (IBD) in the gut [4]. Consequently, even the apparently non-pathogenic microbiota could trigger autoimmunity when the finely regulated balance is aberrantly fragile [5]. Critical data on the effect that dietary intake of "the brewer and baker’s yeast" *Saccharomyces cerevisiae* may induce on T helper (Th) 17 cells are still lacking.

IMMUNOLOGICAL ASPECTS AND CLINICAL-LABORATORY ANALYSIS

Yeasts are employed as efficient biological machinery that produces several antigenic components for vaccines needed to elicit protective immune responses. The phagocytosis of the yeast by dendritic cells is activated by the immunogenic cell wall molecules, such as β-1,3-D-glucan and mannan. These proteins can induce critical signals usually associated with microbial infection. In fact, this pair of events constitutes the first step and is followed by antigen degradation and its fragment presentation on the APC surface by major histocompatibility complex (MHC) I and MHC II molecules, interacting with the T cell receptor and prompting
co-stimulatory signals to lead the adaptive T cell (CD8+ or CD4+)-mediated response [1,8]. Subsequently, the development of the humoral immune response leads to the production of antibodies against the yeast by both B lymphocytes and plasma cells, thus it is not yet clear whether this outcome might be an epiphenomenon or could have a direct pathogenic role through a co-stimulatory CD80/86-CD28-mediated effect. By contrast, concerns have been raised regarding the current safety of vaccines due to the presence of adjuvants [3]. Shoenfeld and Agmon-Levin described the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome) in which adjuvants may trigger an autoimmune/inflammatory response in predisposed individuals. In this context, heat-killed Saccharomyces can act like common adjuvants, such as aluminium and silicone, when injected together with preventive vaccines [1,3,6]. ASCAs are directed against the cell wall mannan (phosphopeptidomannan) of *S. cerevisiae*. The assessment of ASCAs by enzyme-linked immunosorbent assay (ELISA) resulted in 50–79% sensitivity and 74–93% specificity in Australian patients with Crohn’s disease [7], depending on the commercial kits used such as those giving ASCA IgA/IgG-positive results at 10 U/ml with a detection threshold of 1 U/ml (ORG 545 ASCA IgG/IgA, ORGENTEC® Diagnostika GmbH, Germany).

DATABANK SEARCH METHOD AND RESULTS

The Protein Database of the National Center for Biotechnology Information (NCBI) was consulted, focusing on the most specific and significant results (highest identity/positivity). Table 1 summarizes the main findings from our group. We also evaluated the E value, which represents the number of different alignments with scores equivalent to or better than that expected to occur in a database search by chance. The lower the E value, the more significant the score and the alignment (mean 5.03 ± 4.86) [9].

ASCA POSITIVITY IN AUTOIMMUNE DISEASES

ASCA immunoglobulin A, G and M levels were measured by ELISA in 30 patients affected with RA and in 152 healthy adult controls. ASCA IgA prevalence was significantly higher in patients suffering from RA than in the healthy subjects (40% vs. 5.3%). In RA patients, ASCA IgA levels were also strongly correlated with C-reactive protein (CRP) ($r = 0.695, P < 0.01$) as well as erythrocyte sedimentation rate (ESR) ($r = 0.708, P < 0.01$) [11]. As shown in Table 1, significant similarities were observed between the sequence of autoantigens and mannan expressed by the cell wall of *S. cerevisiae*. In a different supporting study, serum samples taken from 40 patients with SLE and 152 healthy subjects were compared for ASCA IgA, IgG and IgM levels as tested by ELISA. The prevalence of ASCA IgG, but not IgM and IgA, was significantly raised in active SLE patients (57.5%) compared to healthy controls (8.5%). Conversely, ASCA IgG levels were relatively lower in SLE patients during remission, indicating a possible correlation with disease activity [1]. Several SLE autoantigens have been found to share sequences with yeast mannan, and U2 snRNP B’ shows the best match. Considering several autoimmune disorders associated with ASCA positivity [1], we also discovered other autoantigens that might cross-react with antibodies against mannan of *S. cerevisiae* according to the percentages of sequence identities (ID) and/or positive substitutions (PS) such as GAD65 (ID 35%, PS 57%), α-enolase 1 in Behçet’s disease with ocular involvement (uveitis) (ID 63%, PS 88%), thyroid peroxidase (ID and PS 71%) for autoimmune thyroid disease, and calprotectin (ID 60%, PS 100%) for Crohn’s disease [Table 1] [1].

ASCA POSITIVITY AND ATHEROSCLEROSIS

Interestingly, several homologies have been detected by analyzing and matching the molecular sequence of *S. cerevisiae* phosphopeptidomannan with cardiac myosin (ID 63%, PS 88%). Complementary to this, elevated ASCA IgA and IgG levels were found in patients who had suffered an acute coronary syndrome (ACS) or acute myocardial infarction (AMI), suggesting that ASCA positivity in AMI could be identified as a useful marker for atherosclerotic plaque instability [10]. Therefore, since autoantibodies can be considered stable over time, they may be less dependent on the period between plaque rupture and AMI onset than other assessable inflammatory biomarkers [10]. Additionally, the assessment of these autoantibodies could be a valid addition for the careful screening of patients whose anti-cardiac troponin I (anti-cTnI) serum

<table>
<thead>
<tr>
<th>Autoimmune disease</th>
<th>ASCA</th>
<th>Antigen (Hom sapiens)</th>
<th>Comparison to mannan: RAPS (%)</th>
<th>Identities</th>
<th>Positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>neg</td>
<td>pos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>pos</td>
<td>neg</td>
<td>gp130-RAPS</td>
<td>4/5, 80%</td>
<td>4/5, 80%</td>
</tr>
<tr>
<td>APS</td>
<td>pos</td>
<td>pos</td>
<td>antiCL/β2GPI</td>
<td>5/6, 83%</td>
<td>5/6, 83%</td>
</tr>
<tr>
<td>ACS/AMI</td>
<td>pos</td>
<td>pos</td>
<td>cardiac myosin</td>
<td>7/8, 88%</td>
<td>7/8, 88%</td>
</tr>
<tr>
<td>Behçet’s disease</td>
<td>pos</td>
<td>pos</td>
<td>a-enolase 1</td>
<td>5/6, 83%</td>
<td>7/8, 88%</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>pos</td>
<td>pos</td>
<td>Calprotectin</td>
<td>3/5, 60%</td>
<td>5/5, 100%</td>
</tr>
</tbody>
</table>

Table 1. Original selection of the most significant results from our exhaustive collection

The percentage of sequence identities and/or positive substitutions expresses the extent to which the protein sequences are related.
level may produce false negatives, bringing about a delay in non-ST segment elevation myocardial infarction (NSTEMI) diagnosis [10].

CONCLUSIONS
Our results strongly suggest that the role of ASCAs in clinical practice, as well as the dietary recommendations for specific groups of patients, should be further explored in order to evaluate their predictive or prognostic relevance. New manufacturing challenges may need to be considered for vaccines containing S. cerevisiae.

Correspondence
Dr. M. Rinaldi
Rheumatology, Allergology and Clinical Immunology, Dept. of Medicina dei Sistemi, Policlinico Tor Vergata Hospital, Via di Montpellier 1, 00133 Rome, Italy
email: maurizio.rinaldi@hotmail.com

References
2. Temajo NO, Howard N. The mosaic of environment involvement in autoimmunity: the abrogation of viral latency by stress, a non-infectious environmental agent, is an intrinsic prerequisite prelude before viruses can rank as infectious environmental agents that trigger autoimmune diseases. Autoimmun Rev 2014; 13: 635-40.

Capsule
Parasites make it hard to fight viruses
Microbial co-infections challenge the immune system – different pathogens often require different flavors of immune responses for their elimination. Two teams studied what happens when parasitic worms and viruses infect mice at the same time. Reese et al. (Science 2014; 345: 73) found that mice already infected with parasitic worms were worse at fighting off viruses. In both cases, worms skewed the immune response so that the immune cells and the molecules they secreted created an environment favorable for the worm at the expense of antiviral immunity. Eitan Israeli

Capsule
Angiotensin-nepriylsin inhibition versus enalapril in heart failure
McMurray et al. compared the angiotensin receptor-neprilysin inhibitor LCZ696 with enalapril in patients who had heart failure with a reduced ejection fraction. In previous studies, enalapril improved survival in such patients. In this double-blind trial, the authors randomly assigned 8442 patients with class II, III, or IV heart failure and an ejection fraction of 40% or less to receive either LCZ696 (at a dose of 200 mg twice daily) or enalapril (at a dose of 10 mg twice daily) in addition to recommended therapy. The primary outcome was a composite of death from cardiovascular causes or hospitalization for heart failure, but the trial was designed to detect a difference in the rates of death from cardiovascular causes. The trial was stopped early, according to prespecified rules, after a median follow-up of 27 months, because the boundary for an overwhelming benefit with LCZ696 had been crossed. At the time of study closure, the primary outcome had occurred in 914 patients (21.8%) in the LCZ696 group and 1117 patients (26.5%) in the enalapril group [hazard ratio in the LCZ696 group 0.80, 95% confidence interval (CI) 0.73–0.87, P < 0.001]. A total of 711 patients (17.0%) receiving LCZ696 and 835 patients (19.8%) receiving enalapril died [hazard ratio for death from any cause 0.84, 95%CI 0.76–0.93, P < 0.001]; of these patients, 558 (13.3%) and 693 (16.5%), respectively, died from cardiovascular causes [hazard ratio 0.80, 95%CI 0.71–0.89, P < 0.001]. As compared with enalapril, LCZ696 also reduced the risk of hospitalization for heart failure by 21% (P < 0.001) and decreased the symptoms and physical limitations of heart failure (P = 0.001). The LCZ696 group had higher proportions of patients with hypotension and nonserious angioedema but lower proportions with renal impairment, hyperkalemia, and cough than the enalapril group.

Eitan Israeli