The last 15 years has seen the mushrooming of “AXLS” courses in Israel. I refer to the Advanced Cardiac Life Support (ACLS) [1], the Advanced Trauma Life Support (ATLS) [2], the Prehospital Trauma Life Support (PHTLS) [3], and the Pediatric Advanced Trauma Life Support (PALS) [4]. In this issue of IMAJ, Waisman et al. [5] summarize 10 successful years of PALS in Israel. They report an impressive number of physicians, nurses and paramedics who participated in the course and an increase in the theoretical knowledge and skills associated with pediatric resuscitation.

However, despite Waisman’s encouraging findings, one must ask the question, which I believe is legitimate, whether all these “AXLS” courses improve emergency clinical skills, or whether they constitute a small industry associated with revenue. To be cautious, I would dare to say they are both. These courses are all protected by copyright. The books are sold by the relevant association (American Heart Association, American College of Surgeons, National Association of Emergency Medical Technicians). These copyrights do not just require some form of licensing and cost money, but they also propose high standards expressed by pre-defined objectives, a fixed efficient curriculum, well-built lectures, state-of-the-art simulations and good skills stations. Usually, very large societies or associations give their sponsorship to these courses, which are therefore updated often with new editions published every few years. These predetermined schemes, which are backed by medical educators, avert the well-known Israeli propensity to cut corners and to improvise. There are no excuses to justify failing the course, and standards must be adhered to and evaluation tests passed.

Acute medical situations mandate simple automatic schemes for response. Straightforward algorithms enable rapid rational decisions and reactions and a common language among all healthcare providers both in the prehospital and hospital phases (e.g., A=Airway). Resuscitating a patient or managing other dire urgent medical conditions is not the right time to try and remember peer-reviewed articles. These circumstances call for – one might say – mechanical responses. The common pathway of all these “AXLS” courses is to follow rational, sequential, rapid steps of identifying a life-threatening disorder, resolving it using very simple measures, and then continuing to the next step. It is often emphasized that a life-endangering situation may be dynamic, and therefore repeated surveys, monitoring and documentation are all mandatory.

Indeed, some of these “AXLS” became a mandatory part of training in Israel for various disciplines. These include ATLS for completion of residency in the surgical specialties in their wider capacity (anesthesia, ophthalmology, gynecology, etc), PALS for pediatricians, PHTLS as part of the paramedics training course, and ACLS as a precondition to start residency in many of the major hospitals in Israel.

All these are fine in theory and make a lot of sense, but one should ask if these courses have any real value, and do they indeed improve outcomes? Many articles have demonstrated the contribution of ATLS to the cognitive knowledge and manual skills of medical students and young physicians [6,7]. This enhanced knowledge and expertise has been confirmed by repeated, written, multiple choice questions tests, and by the use of the objective structured clinical examination (OSCE).

Resuscitation performance according to the ACLS guidelines significantly shortens intubation times in pre-hospital settings [8]. However, despite the potential benefits of adopting these guidelines, no improvement in outcomes has been shown to be associated with cardiopulmonary resuscitation according to the ACLS protocols [9]. PALS was shown to improve knowledge and technical skills [10]. Husum [11] claimed a reduction of mortality in the battle of Jaliababad, Afghanistan, attributing it to the ATLS course; but I regard his findings cautiously, because Afghanistan’s battlefields are probably not the right academic and control setting to evaluate the outcome of battle injuries.

We and others have observed a slow decline in cognitive knowledge following the ATLS course [12], and the same goes for the ACLS. It should be remembered that improvement in outcomes is one of the most difficult issues to confirm in medicine. It is simpler to demonstrate an upgrade in structures and processes, which was achieved for these advanced life support courses.

I believe that the adoption of clinical guidelines is desirable especially with regard to urgent medical situations. Implementation of these “AXLS” courses provides a common language among healthcare providers in Israel and abroad. Until better
standards are suggested, these guidelines should serve as the gold standards of care for life-threatening situations and resuscitation in adults and children in Israel.

References

Correspondence: Dr. S.C. Shapira, Deputy Director-General, Hadassah University Hospital, P.O. Box 12000, Jerusalem 91120, Israel. Phone: (972-2) 677-7716. Email: sshapira@hadassah.org.il

Caspule

Stem cell research without embryos

The use of human embryos has triggered considerable societal debate about human embryonic stem (hES) cell research. Cowan et al. describe an alternative method of deriving hES cells that may ultimately eliminate the need for human embryos and oocytes. Experimentally induced fusion of human adult somatic cells with hES cells in culture produces hybrid cells that are transcriptionally "reprogrammed" back to the embryonic state. If future experiments indicate that this reprogrammed state is retained after removal of the pluripotential ES cell nucleus (currently a formidable technical hurdle), the hybrid cells theoretically could be used for the production of genetically tailored hES cell lines.

Science 2005;309:1369
Eitan Israeli

Caspule

CD4+ or CD8+ choice

Thymocytes develop into two principal lineages: CD4+ or CD8+ T cells. In arriving at either fate, these cells first pass through a double-positive stage in which both CD4 and CD8 co-receptors are expressed, with one or the other later becoming permanently turned off. To explain how this is regulated, Sarafova and associates extended their kinetic signaling model in which cell fate is determined by the context of T cell receptor (TCR) signals during the initial CD8 down-regulation that takes place in all double-positive thymocytes. The model predicts that continued signaling in these cells (facilitated through TCR and CD4) would maintain CD4 transcription. However, if signaling were not sustained (as would be the case for TCR signals that depend on CD8 receptors), then CD4 expression would stop and CD8 transcription would resume. To test this, thymocytes from CD4-deficient mice were engineered to express a CD4 transgene under the control of immature CD8 transcriptional elements. In response to CD4-dependent TCR activation, these cells down-regulated the CD4 transgene (as they also did for endogenous CD8), but subsequently re-started CD8 gene transcription to become functional CD8+ T cells. This supports the idea that regardless of TCR and co-receptor specificity, the fate of thymocytes is dictated by the presence or absence of a sustained T cell signal that mediates transcriptional cross-regulation of co-receptor expression.

Immunity 2005;23:75
Eitan Israeli