Severe Hypertriglyceridemia in an Infant of Arab Descent

Doron M. Behar MD PhD1,5, Lior Adler MD PhD2 and Lina Basel-Vanagaite MD PhD1,3,4

1Recanati Genetics Institute, Rabin Medical Center (Beilinson Campus), Petah Tikva, Israel
Departments of 2Pediatrics C and 3Pediatric Genetics, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
4Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
5Molecular Medicine Laboratory, Rambam Health Care Campus, Haifa, Israel

KEY WORDS: type I hyperlipoproteinemia, Arabs, lipoprotein lipase (LPL), mutation, autosomal recessive

Severe hypertriglyceridemia is a rarely occurring simple monogenic disorder resulting from loss of function mutations in the genes LPL, APOC2, APOA5, LMF1 and GPIHBP1. Inheritance is typically autosomal recessive, often presenting in childhood, and the result of homozygosity (or compound heterozygosity) for large-effect genetic mutations [1]. Specifically, mutations in the LPL gene (OMIM 609708), encoding for lipoprotein lipase, were proved to be causative for type I hyperlipoproteinemia (OMIM 238600). Lipoprotein lipase plays a crucial role in lipid metabolism and transport by catalyzing the rate-limiting step in the hydrolysis of the triacylglycerol component present in the circulating chylomicrons and very low density lipoprotein with apolipoprotein C2 functioning as an essential cofactor/activator for its activity. We report the identification of the pathogenic missense mutation LPL, c.809G>A (p.ARG270HIS) in an infant presenting with severe hypertriglyceridemia.

Patient Description

A 3 month old infant was referred for genetic counseling following the identification of severe fasting hypertriglyceridemia peaking at 24,550 mg/dl. The boy is the first child born to healthy consanguineous parents of Arab Muslim origin [Figure]. Obstetric history and developmental milestones were unremarkable. He was born at term with a birth weight of 3000 g. At age 2 months, during a general checkup because of earache, hepatomegaly was noted and he was referred for routine laboratory workup, which revealed extreme hypertriglyceridemia. Upon admission his height was 58 cm (14th percentile), weight 6060 g (47th percentile), and head circumference 40.5 cm (31th percentile). On physical examination, he had no dysmorphic features or physical abnormalities apart from slight hepatomegaly palpable 2 cm below the right costal margin and a few xanthomas on the trunk and limbs. Ophthalmoscopy was compatible with lipemia retinalis. Triglyceride and total cholesterol levels 3 hours postprandial were 24,550 mg/dl and 1700 mg/dl, respectively. An abdominal ultrasound confirmed the hepatomegaly.

Genomic DNA was extracted from peripheral leukocytes following standard protocols. DNA was amplified to obtain all LPL and APOC2 genes coding exons and their flanking regions using conventional polymerase chain reaction techniques. PCR products were purified using magnetic particle technology (Seradyn Inc., IN, USA). After purification, all fragments were sequenced by forward and backward internal primers to determine the noted regions. Sequencing was performed on a 3730xl DNA Analyzer (Applied Biosystems, CA, USA), and the resulting sequences were analyzed with the Sequencher software (Gene Codes Corporation, MI, USA). Mutations were scored relative to the reference sequences deposited in NCBI [APOC2: (NM_000483); LPL: (NM_000237)].

A base alteration in exon 6 of the LPL gene (c.809G>A), resulting in a missense mutation substitution at amino acid position 270 (p.ARG270HIS), was detected in the proband [Figure]. His parents were heterozygous carriers with the same mutation.

Identification of the LPL, c.809G>A (p.ARG270HIS) mutation by sequence analysis

For Editorial see page 43
erozygous for the mutation, as expected. No mutations were found within the boundaries of the coding exons and the splicing regions of the APOC2 gene.

The patient was put on a medium-chain triglyceride-rich diet with fast response and reversion of the lipemia retinalis. Upon discharge, his fasting plasma values of triglycerides and cholesterol were 437 mg/dl and 428 mg/dl, respectively.

COMMENT

A few individuals with plasma triglyceride level surpassing the 95th percentile have rare monogenic disorders resulting from homozygous loss-of-function mutations in LPL, APOC2, APOA5, LMF1 or GPIHBP1 genes. The frequency of individuals with these elevated triglyceride syndromes is less than 1:10^5 and they fit the definition of hyperlipoproteinemia type 1, with chylomicronemia, skin and eye abnormalities, and often pancreatitis [1]. We describe a family demonstrating an autosomal recessive pattern of inheritance for the missense mutation c.809G>A in the LPL gene. This mutation was previously labeled as LPL ARG243HIS and was reported to be pathogenic in one Caucasian patient, one Japanese, one Italian, one Dutch and one Chinese [2]. Expression studies demonstrated that the p.ARG270HIS substitution not only abolishes lipoprotein lipase enzymatic activity but also decreases enzyme secretion [3]. The importance of early identification of LPL deleterious mutations seems to be critical since a highly effective and simple treatment that primarily relies on strict adherence to a medium-chain triglyceride-rich diet is available. In particular, the 34 year old female of Caucasian origin carrying the very same mutation in a compound heterozygote state was reported to have suffered throughout childhood from recurrent episodes of abdominal pain and pancreatitis and was noted to have eruptive xanthomas, lipemia retinalis, and splenomegaly [4]. Similarly, the Italian patient carrying the mutation also in a compound heterozygote state presented with recurrent vomiting at age 3 months. Following initiation of a low fat diet no additional episodes were recorded and at the age of 7 she was noted to have lipemia retinalis and splenomegaly, but no eruptive xanthoma or hepatomegaly [5].

To our knowledge, the present article is the first report of an LPL deleterious mutation in Israel. The reported mutation should be considered for testing in patients presenting with severe hypertriglycerideremia predominantly among Arab Muslims in central Israel. Precise estimation of the carrier frequency of this mutation and the contribution of common and rare variants of the LPL gene to hypertriglyceridemia in the Israeli population is the scope of future studies.

References