Left Subclavian Artery Occlusion by Thoracic Aortic Stent Graft: Long-Term Clinical and Duplex Follow-Up

Offer Galili MD¹, Simone Fajer MD¹, Avraham Eyal MD² and Ron Karmeli MD¹

Departments of ¹Vascular Surgery and ²Invasive Radiology, Carmel Medical Center, Haifa, Israel

Key words: thoracic aortic aneurysm, stent graft, subclavian artery coverage, subclavian steal syndrome, duplex

Abstract

Background: In recent years there has been an increase in endovascular repair of thoracic aortic aneurysms. In cases of insufficient neck length, occlusion of left subclavian artery achieves proper sealing and is usually well tolerated. Selected cases require revascularization of the left subclavian artery, including patients after coronary bypass surgery (left internal mammary to left anterior descending) and those with arm claudication or subclavian steal syndrome.

Objectives: To evaluate the tolerability of left subclavian artery occlusion by stent graft without revascularization.

Methods: Thirty patients with thoracic aortic aneurysms underwent endovascular repair between July 2000 and November 2004. Eleven of them had occlusion of the left subclavian artery that required revascularization in two. Follow-up (average 3 years) included: a) blood pressure measurements of both arms at rest, after effort and pulse palpation, and b) vertebral blood flow by duplex scan.

Results: Of nine patients with no revascularization, 8 (89%) tolerated left subclavian artery occlusion with no claudication or steal syndrome; one (11%) suffered mild claudication only after effort and required no intervention. No left radial pulses were palpated in the nine patients. Blood pressure measurements in the left arm showed an average decrease of 40%, which remained constant after induced effort in all patients and was clinically insignificant. Duplex scan demonstrated reverse flow in the left vertebral artery in 8 of 9 patients (89%) and occlusion in 1 (originating in the arch and covered by the stent graft) with no clinical symptoms.

Conclusions: Left subclavian artery occlusion by stent graft is a tolerable procedure in the long term. In most cases, the constant decrease in blood pressure remained unchanged during follow-up and had no significant adverse affects. Most patients do not require revascularization prior to the endovascular procedure.

IMAJ 2007;9:668–670

The treatment of thoracic aortic diseases has expanded with the advanced development of endovascular systems. Endoluminal deployment of stent grafts requires a sufficient “neck,” defined as a normal aortic segment of at least 1.5–2 cm, to allow for proper anchoring and sealing [1,2]. This requirement is problematic in cases of thoracic aortic aneurysms with a short neck distal to left subclavian artery, especially in cases of post-traumatic TAA. To create an adequate neck, occlusion of the left subclavian artery is performed by covering its orifice. In extreme cases, the left common carotid artery can be covered after performing right-to-left common carotid bypass. As a result of left subclavian artery occlusion, collateral supply to the arm results from several arteries: vertebral (reverse flow), left internal mammary and the thyrocervical trunk. Occlusion of the left subclavian artery may result in several possible complications: subclavian steal syndrome, claudication of the left arm, and cardiac ischemia/unstable angina in patients after coronary bypass (LIMA to LAD).

Several authors have favored revascularization procedures prior to endovascular treatment to avoid these complications [2-5]. Other reports described intentional left subclavian occlusion by stent grafts without revascularization as a tolerable procedure [6-12]. We report a series of 11 patients in whom the orifice of the left subclavian artery was intentionally covered during endoluminal deployment of a thoracic stent graft.

Patients and Methods

The study population comprised 30 patients with TAA, treated endovascularly between July 2000 and November 2004. Occlusion of the left subclavian artery was performed in 11 patients (9 males and 2 females – the study group) [Figures 1 and 2]. All patients gave their informed consent after receiving a detailed explanation. In one case, the left vertebral artery originated directly from the aorta and was also occluded. Two types of endoprostheses were used: “Excluder” thoracic endoprosthesis (W.L. Gore & Associates Inc., Flagstaff, Arizona USA) in four patients, and “Talent” (Medtronic, Minneapolis, USA) in the other seven. The mean diameter of the aneurysms was 60 mm. Among the TAAs, three were post-traumatic aneurysms. One patient was operated in an emergency procedure due to acute traumatic rupture of the thoracic aorta.

Most procedures were performed under general anesthesia, and stents were introduced through a femoral approach. One patient had a prior left carotid to left subclavian artery bypass, from previous cardiac bypass artery bypass surgery using both right and left intimal mammary arteries. A second case had coverage of the left common carotid artery and therefore underwent right-to-left common carotid artery bypass as well as right-to-left subclavian bypass. The remaining patients did not undergo revascularization of the left subclavian artery. Follow-up included a computed tomography angiography 3 days, 3 months and yearly thereafter. CTA was used to diagnose failure of stent occlusion, collateral supply to the arm results from several arteries: vertebral (reverse flow), left internal mammary and the thyrocervical trunk. Occlusion of the left subclavian artery may result in several possible complications: subclavian steal syndrome, claudication of the left arm, and cardiac ischemia/unstable angina in patients after coronary bypass (LIMA to LAD).

LIMA = left internal mammary
LAD = left anterior descending
CTA = CT angiography

TAA = thoracic aortic aneurysm
graft deployment as well as late complications such as endoleaks and dislocations. In addition, follow-up (average ± SD 32 ± 15 months) included blood pressure measurements of both arms at rest, after effort (repetitive arm lifting) [13] and pulse palpation, and vertebral artery blood flow by duplex (direction and velocity).

Results
The use of stent grafts was successful in all patients, as confirmed by aortography during the procedure. CTA performed 3 days after the procedure demonstrated the correct position of the stent grafts and the absence of leaks. One patient had a minor stroke (most probably embolic) during the procedure which resolved completely, and one patient had mild reversible pulmonary complications. No major complications were recorded during the 30 day postoperative period. Of the 11 patients with no revascularization 9 tolerated left subclavian occlusion with no claudication or steal. One of these nine suffered mild effort claudication and required no intervention. No left radial pulses were palpated in these nine patients. Systolic blood pressure measurements in the left arm showed an average 40% decrease and remained unchanged during follow-up. There was also no change in vertebral blood flow by duplex. This decrease in blood pressure remained constant after induced effort in all patients and was clinically insignificant. Duplex scan demonstrated reverse flow in the left vertebral artery in eight of the nine patients and occlusion in one patient with no clinical symptoms [Table 1].

Discussion
Treatment of thoracic aortic disease with endovascular stent graft systems is feasible and carries a lower rate of morbidity and mortality compared to open surgery [14]. One of the limitations of the endovascular procedure includes the need for a sufficiently long proximal aneurysm “neck” [1,2]. In TAAs of a post-traumatic nature, the aneurysm usually begins at the aortic isthmus close to the orifice of the left subclavian artery. In these cases, proper anchoring and sealing of the stent graft includes covering the orifice of the left subclavian artery. In an early report by Ehrlich and colleagues [3], revascularization of the left subclavian artery prior to insertion of the stent graft was favored. However, the intentional occlusion of the left subclavian artery by stent graft

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Radial pulse Rt/Lt</th>
<th>Dizziness (present or not during effort)</th>
<th>Lt. arm claudi­cation</th>
<th>Systolic BP Rt/Lt (mmHg)</th>
<th>Effort systolic BP Lt. arm (mmHg)</th>
<th>Duplex vertebral artery Rt/Lt (cm/sec)</th>
<th>Duplex flow direction in the vertebral artery Rt/Lt</th>
<th>Follow-up period (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+/−</td>
<td>+</td>
<td>+</td>
<td>170/120</td>
<td>118</td>
<td>95/63</td>
<td>Ant/reversed</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>197/107</td>
<td>110</td>
<td>107/75</td>
<td>Ant/reversed</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>+/−</td>
<td>+/−</td>
<td>−</td>
<td>139/80</td>
<td>75</td>
<td>60/40</td>
<td>Ant/reversed</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>165/95</td>
<td>95</td>
<td>46/210</td>
<td>Ant/reversed</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>169/111</td>
<td>110</td>
<td>210/109</td>
<td>Ant/reversed</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>130/90</td>
<td>90</td>
<td>60/70</td>
<td>Ant/reversed</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>131/80</td>
<td>73</td>
<td>150/70</td>
<td>Ant/reversed</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>120/80</td>
<td>80</td>
<td>90/60</td>
<td>Ant/reversed</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>123/88</td>
<td>70</td>
<td>60/0</td>
<td>Ant/occluded</td>
<td>36</td>
</tr>
<tr>
<td>10*</td>
<td>+/+</td>
<td>−</td>
<td>−</td>
<td>118/127</td>
<td>130</td>
<td>70/0</td>
<td>Ant/occluded</td>
<td>48</td>
</tr>
<tr>
<td>11*</td>
<td>+/+</td>
<td>−</td>
<td>−</td>
<td>164/160</td>
<td>160</td>
<td>81/0</td>
<td>Ant/ant</td>
<td>12</td>
</tr>
</tbody>
</table>

* Revascularization of left subclavian artery prior to endovascular procedure

Figure 1. Post-traumatic thoracic aortic aneurysm. The aneurysm is located at the aortic isthmus with a “neck” of less than 1 cm from the orifice of the left subclavian artery.

Figure 2. Completion angiography after endovascular treatment. The orifice of the left subclavian artery was covered and occluded by the stent graft.
without prior revascularization has been reported [6,8-12], with a low incidence (0–15%) of left arm symptoms – both acute and during follow-up [8,10-12].

According to our experience most patients are asymptomatic after left subclavian artery occlusion, irrespective of vertebral artery flow. Only one case with a previous CABG and LIMA to LAD needed a procedure to prevent cardiac ischemia. Duplex scans of the left vertebral artery were performed in all our patients [Table 1]. Collaterals (aside from the vertebral artery) from the LIMA and thyrocervical branches apparently supplied sufficient flow to the left subclavian artery. This is especially evident in cases of left vertebral occlusion. Interestingly, although eight patients demonstrated reverse flow in the left vertebral artery, none of them suffered any neurological sequelae (subclavian steal syndrome). The absence of neurological symptoms most probably indicates patent intracerebral communicating arteries in the brain. These results may imply that four-vessel angiography is not necessary before left subclavian occlusion. With increasing experience in non-invasive imaging (CTA) versus invasive imaging (four-vessel angiography), a CTA with or without duplex may be sufficient.

The current study confirms that occlusion of the left subclavian artery orifice with a stent graft is well tolerated. In most cases the constant decrease in blood pressure remained unchanged during a long follow-up and had no significant clinical adverse affects. The decision for revascularization can be made post-procedurally if left arm claudication or subclavian steal symptoms develop. The current data add to the accumulating literature supporting preventive revascularization prior to endovascular repair of TAA only in cases with a prior LIMA to LAD bypass.

References

Correspondence: Dr. R. Karmeli, Chairman, Dept of Vascular Surgery, Carmel Medical Center, Haifa 34362, Israel.
Phone: (972-4) 825-0267
Fax: (972-4) 825-0898
email: carmeli_ron@clalit.org.il

Capsule

Hepatocellular carcinoma, a common and deadly cancer of the liver, is 3 to 5 times more likely to occur in men than in women. Working in a mouse model in which liver cancer is induced by exposure to a chemical carcinogen, Naugler et al. (Science 2007;317:121) propose a molecular basis for this phenomenon, explained by the action of the female hormone estrogen and its ability to inhibit inflammatory responses in the liver. Estrogen acts to inhibit secretion of interleukin-6 (IL-6) by liver macrophages known as Kupffer cells. Production of IL-6 was dependent on the signaling adaptor protein MyD88, which in turn may be activated by products of dying cells in the injured liver. Rakoff-Nahoum and Medzhitov (p. 124) implicate MyD88 in promoting another cancer, that of the intestine. Inflammation is known to be a risk factor for colorectal tumors. In a mouse model of intestinal tumorigenesis, mice lacking MyD88 showed inhibited growth and progression of tumors.

Eitan Israeli