Ataxia-telangiectasia is a rare autosomal recessive multisystem disorder characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, recurrent sinopulmonary infection – all due to immune defects, and a high incidence of mainly B lymphoid malignancy [1]. Ataxia-telangiectasia results from mutations in a single gene, ataxia telangiectasia mutated (ATM). The protein product of the ATM gene is a serine-threonine kinase involved in cell cycle control, gene regulation, intracellular signaling and DNA repair. Recently, investigators partly clarified its role in the immune system by showing its importance in class-switch recombination, an essential step in the production of immunoglobulin A, G and E but not M [2]. While this explains the hypogammaglobulinemia observed in A-T, the exact mechanism that leads to the cellular immune defect in this disease is not yet understood.

Progressive cerebellar ataxia is the presenting symptom in most cases, and in 70% telangiectasia appeared before the diagnosis was established. While recurrent bacterial infections due to immunodeficiency are common features, hypogammaglobulinemia as the only symptom of A-T is very rare. In the present study we report twin girls who were diagnosed as suffering from hyper-IgM syndrome without any neurological problems and were subsequently found to have A-T when one of them developed Hodgkin’s lymphoma.

Patient Description

Twin girls, aged 3, were admitted for evaluation of recurrent pneumonias. They were born to healthy parents who were first cousins. Although there were several consanguinity marriages in the family, no genetic disorder was observed. Both girls were in the 10th percentile for weight and height, and apart from some rales in both lungs the physical examination was completely normal. No telangiectasias were observed. Complete blood count was normal in both girls, but both had low levels of IgG (242 mg/dl and 198 mg/dl respectively) and IgA (below 5 mg/dl in both) and very high IgM levels (467 and 825 mg/dl respectively). While isohemagglutinin levels were normal, no specific antibodies to recall antigens were detected. Aside from a low normal CD4 count (40%), lymphocyte subsets were all within the normal range as was the expression of CD40 on B cells. Since no mutations in AID (activation-induced cytidine deaminase) or UNG (uracil N glycosylase) were found, the twins were diagnosed as suffering from autosomal recessive hyper-IgM syndrome, most probably type 4 [3].

Treatment with intravenous gammaglobulin 400 g/kg for 3 weeks was started with good clinical results. Eighteen months later one of the sisters was found to have a thoracic mass which was diagnosed as Hodgkin’s lymphoma. Further investigation disclosed high levels of alpha-fetoprotein in both girls and Western blotting showed only a trace amount of ATM in the patients’ fibroblast lysate. Six months later the girl with the lymphoma died; her sister continues with the intravenous gammaglobulin therapy. Recently some gait disturbance was noted.

Case Communications

Ataxia-Telangiectasia in Twins Presenting as Autosomal Recessive Hyper-Immunoglobulin M Syndrome

Amos Etzioni MD1, Ayelet Ben-Barak MD2, Sophie Peron3 and Anne Durandy MD PhD3,4

Departments of 1Pediatrics and 2Pediatric Hemato-Oncology, Meyer Children’s Hospital, Haifa, Israel Affiliated to Rappaport Faculty of Medicine, Technion-Israel Institute for Technology, Haifa, Israel 3INSERM U768, Hopital Necker-Enfants Malades, and 4Assistance publique – Hôpitaux de Paris, Hopital Necker-Enfants Malades, Unité d’Immunologie et d’Hématologie, Paris, France

Key words: immunodeficiency, hyper-IgM, ataxia-telangiectasia, hypogammaglobulinemia

A-T = ataxia-telangiectasia

Ig = immunoglobulin
Further investigations
In order to understand the primary defect in this family we performed several more studies. Class-switch recombination was evaluated by measuring IgE production. Peripheral blood mononuclear cells were incubated with soluble CD40L (500 ng/ml) and recombinant interleukin-4 (100 U/ml) for 12 days. A marked defect in class-switch recombination was observed. While IgE production in the control rose from 70 to 922 pg/ml after 12 days, no increase in the patients' cells was observed – 202 pg/ml versus 147 pg/ml.

Somatic hypermutation in the VH3-23 gene in CD19+ CD27+ B cells was assessed as described earlier [3]. Normal frequency (2.4%) was observed (age-matched control 2.6%–6.3%).

Ionizing radiation sensitivity was analyzed by clonogenic assays upon exposure of primary fibroblasts to gamma rays. A marked decrease in cell survival was observed after irradiation, similar to the one seen in other patients with A-T.

Comment
A-T is considered a primary immunodeficiency disease. While several defects in the immune system have been reported, hypogammaglobulinemia is the most frequent and is associated with recurrent sinopulmonary bacterial infection [4]. Low levels of IgG, IgA and IgE are observed in more than 80% of the patients, while high IgM occurs in approximately 1%. Once IgM + B cells engage antigen, two genetic alterations can occur to improve antibody function, although no clinical characteristic of A-T was observed. Indeed it was found that ATM, the gene mutated in A-T, is essential for the class-switch recombination process, but not for somatic hypermutation. Although in most cases of A-T no ATM molecule is detected, the trace amount that was seen in our case may point to a partial ATM kinase activity that would explain the milder clinical phenotype observed in our patients.

In summary, we believe that A-T should be considered in the rare cases of children presenting with autosomal recessive hyper-IgM syndrome type 4.

Acknowledgment. We thank Dr. Yael Ziv for performing the Western blot, and Dr. Silvia Giliani for performing some of the FACS assays.

This work was supported by CEE EUROPOLICY-PID contact 6 Framework Program, Agence nationale de la recherche (ANR), l’Association Francaise Contre le Cancer (ARC) and l’Institut National du Cancer (INCa).

References

Correspondence: Dr. A. Etzioni, Meyer Children's Hospital, Haifa 31096, Israel. Phone: (972-4) 854-1936 Fax: (972-4) 854-1870 email: etzioni@rambam.health.gov.il

There was never a genius without a tincture of madness
Aristotle (384-322 BCE)

The mind commands the body and the body obeys. The mind commands itself and finds resistance
St. Augustine (354-430 CE), one of the most important figures in the development of Western Christianity