Identification of the Gene Causing Long QT Syndrome in an Israeli Family

Michal Tenenbaum MSc1,5*, Shahar Lavi MD4*, Nurit Magal PhD1,2, Gabrielle J. Halpern MD1, Inbal Bolocan MSc1,2, Monther Boulos MD4, Michael Kapeliovich MD4, Mordechai Shohat MD1,2,3 and Haim Hammerman MD4

1Department of Medical Genetics and 2Felsenstein Medical Research Center, Rabin Medical Center (Beilinson Campus), Petah Tikva, Israel
3Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
4Intensive Cardiac Care Unit, Rambam Health Care Campus, Haifa, Israel
5Maccabi Health Services Megalab, Rehovot, Israel

Abstract

Background: Long QT syndrome is an inherited cardiac disease, associated with malignant arrhythmias and sudden cardiac death.

Objectives: To map and identify the gene responsible for LQTS in an Israeli family.

Methods: A large family was screened for LQTS after one of them was successfully resuscitated from ventricular fibrillation. The DNA was examined for suspicious loci by whole genome screening and the coding region of the LQT2 gene was sequenced.

Results: Nine family members, 6 males and 3 females, age (median and interquartile range) 26 years (13, 46), who were characterized by a unique T wave pattern were diagnosed as carrying the mutant gene. The LQTS-causing gene was mapped to chromosome 7 with the A614V mutation. All of the affected members in the family were correctly identified by electrocardiogram. Corrected QT duration was inversely associated with age in the affected family members and decreased with age.

Conclusions: Careful inspection of the ECG can correctly identify LQTS in some families. Genetic analysis is needed to confirm the diagnosis and enable the correct therapy in this disease.

Keywords: arrhythmia, genetics, ion channels, long QT syndrome, KCNH2

Subjects and Methods

An apparently healthy 24 year old woman was found unconscious and without pulse while watching television. Cardiopulmonary resuscitation was initiated by a family member, and ECG tracing later on showed ventricular fibrillation. She was successfully defibrillated and transferred intubated to our hospital. Initial laboratory tests showed mild hypokalemia and hypomagnesemia, and on the ECG, QT interval was slightly prolonged [Figure 1A]. She was treated with potassium and magnesium supplements, but had several short episodes of Torsade de pointes during her hospital stay which resolved with temporary pacing. She subsequently made a full recovery and underwent implantation of a defibrillator before discharge. During 4 years of follow-up she was treated with beta blockers and there were no recurrent events.

After written informed consent was obtained, ECG was performed in 14 family members and DNA was isolated using the PUREGENE™ Genomic DNA Purification Kit. The DNA was examined for suspicious loci by whole genome screening on the ABI PRISM 3100 Genetic Analyzer by 400 fluorescence markers from ABI PRISM Linkage Mapping Set V2.5. The coding region of the LQT2 gene, KCNH2, was sequenced. Automated “Dye terminator” cycle sequencing was performed directly on purified polymerase.

Long QT syndrome is an inherited cardiac ion channel disorder that is manifested by prolonged QT interval and ventricular arrhythmias. The location of the genetic mutation determines to a large extent the phenotype expression. However, there is variable expression of severity and incomplete penetrance [1,2]. Until now eight loci associated with LQTS have been identified (LQT1 through LQT8) with 95% of the known mutations located in LQT1-LQT3 [1,3]. Here we report the identification of a rare disease-causing gene in an affected family and investigate the phenotype associated with this mutation.

* The first two authors contributed equally to this work

LQTS = long QT syndrome

Figure 1. [A] ECG of the proband. [B, C, D] Representative ECGs of family members.
chain reaction products (Amersham purification kit, UK) according to the manufacturer’s instructions using an ABI PRISM 3100 Genetic Analyzer. Mutation analysis was carried out by comparing the sequences to the KCNH2 gene sequence of Ensembl genome Browser (www.ensembl.org), gene number: ENSG00000055118 using Sequencher DNA Analysis software.

Results

Nine family members, age (median and interquartile range) 26 years (13, 46), with abnormal ECG were identified. There was no family history of arrhythmias, palpitations or syncope, although the index patient’s brother underwent prior evaluation for suspected seizures. The ECG of her brother [Figure 1B] and other family members revealed prolonged QT intervals with bizarre T waves [Figure 1 C and D, and Table 1] and a pedigree was prepared [Figure 2].

Figure 2 shows two generations of the affected family. In the first generation, three brothers have LQTS (I-1, I-3 and I-5), and in the second generation six family members are affected (II-1, II-2, II-3, II-4, II-7 and II-8). Individual II-7 is the proband.

The QTc and T wave duration were significantly prolonged in the affected compared to the unaffected family members [Table 1]. Patients with long QT were more likely to have biphasic T waves or a second component on the T waves (non-significant). A significant correlation was found between QT duration and age ($r^2 = 0.69$, $P < 0.05$). T wave durations in males were significantly longer compared to females, and there was a trend toward an increase in QTc duration in females compared to males [Table 1].

The disease-causing gene was mapped to chromosome 7 in the region of the KCNH2 gene. Sequencing of the KCNH2 gene revealed a missense mutation in exon 9 in all the affected individuals. We identified the A614V mutation, caused by a nucleotide substitution C $\rightarrow$ T [Figure 3].

Discussion

The diagnosis of LQTS is based on assessment of the ECG, clinical criteria and genetic analysis. Diagnostic criteria for LQTS have low sensitivity, but often simple calculation of the QTc interval using the Bazett’s formula yields reasonable diagnostic results [4].

Table 1. Comparison between affected and unaffected family members

<table>
<thead>
<tr>
<th></th>
<th>Affected females (n=3)</th>
<th>Affected males (n=6)</th>
<th>Unaffected (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QTc duration (msec)</td>
<td>493 ± 15</td>
<td>452 ± 34</td>
<td>393 ± 6*</td>
</tr>
<tr>
<td>T wave amplitude (mV)</td>
<td>0.52 ± 0.23</td>
<td>0.38 ± 0.18</td>
<td>0.47 ± 0.15</td>
</tr>
<tr>
<td>T wave duration (msec)</td>
<td>263 ± 21**</td>
<td>317 ± 3 4</td>
<td>240 ± 40*</td>
</tr>
<tr>
<td>Biphasic T waves</td>
<td>3 (100)</td>
<td>2 (33)</td>
<td>0</td>
</tr>
<tr>
<td>Second component on T wave</td>
<td>2 (66)</td>
<td>5 (83)</td>
<td>1 (20)</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD or values and percentage.
* $P < 0.05$ unaffected vs. affected.
** $P < 0.05$ affected females vs. affected males.
QTc = corrected QT interval.
The diagnostic accuracy is related to the type of LOT and may be affected by other factors. Bifid T waves with a second component are characteristic of the LOT2 genotype and in specific circumstances an accurate diagnosis can be obtained by inspection of the ECG alone [5,6]. Indeed, all affected members in the current study were diagnosed by ECG. Nevertheless, genetic assessment provided better risk stratification and is warranted to identify silent carriers [7,8].

We undertook this study after the proband had a severe arrhythmia due to LOTs. Of the 14 family members examined, 9 had LOT2, each of whom carried the pore mutation A614V. Mutations in the pore region are associated with increased risk for arrhythmic events [9] but the other affected family members have not yet suffered cardiac events. The risk of symptomatic arrhythmia is increased in patients with very prolonged QTc (> 500 msec) and the risk of having arrhythmia at a young age in patients with LOT2 is higher in females, which may explain the arrhythmia in our patient [10]. In the present study we found that in patients with the same HERG mutation, the QTc decreases with age and is longer in females. The genetic identification of the specific mutation in this family helped with better risk stratification [10] and indeed this mutation was reported to be associated with increased risk of arrhythmic events [9].

The first report of the mutation A614V was in 1997 in a Japanese family [11] and until now there have been a few reports of this mutation, from different ethnic origins [11-13]. This mutation causes a change in the protein potassium voltage-gated channel subfamily H member 2, coded by the KCNH2 gene and located in the pore of the ion channel. The pore region is responsible for selectivity, conduction and C inactivation of potassium channels [9]. Four KCNH2 subunits co-assemble with four mirp1-(LOT6) subunits to form a tetrameric protein that is transported to the cell membrane; the electrophysiological characteristics of this mutation were reported [14].

In summary, our findings indicate that in some families with LOTS, identification of affected members can be easily performed by simple inspection of the ECG. More sophisticated genetic analysis is warranted to tailor the best therapy for these patients.

**Acknowledgments.** The authors thank Galit Aharoni for her valuable assistance.

**References**