Halofuginone Reduces the Occurrence of Renal Fibrosis in 5/6 Nephrectomized Rats

Sydney Benchetrit MD¹, Shy Yarkoni MD PhD⁴, Mauro Rathaus MD², Marc Pines PhD³, Gloria Rashid PhD¹, Joelle Bernheim MD² and Jacques Bernheim MD¹

Departments of ¹Nephrology and Hypertension and ³Pathology, Sapir Medical Center, Kfar Saba, Israel
Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
²Institute of Animal Science, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
⁴Collgard Biopharmaceuticals Ltd, Tel Aviv, Israel

Key words: halofuginone, collagen I, fibrosis, nephrectomy, rat

Abstract

Background: Halofuginone is a novel antifibrotic agent that can reverse the fibrotic process by specific inhibition of collagen type I synthesis.

Objectives: To evaluate the effect of Halo on the development of glomerulosclerosis and interstitial fibrosis in the 5/6 nephrectomy rat model

Methods: Male Wistar rats were assigned to undergo 5/6 NX or sham operation, and then divided into three groups: 5/6 NX rats (NX-Halo and NX-Control) and sham. Systolic blood pressure, proteinuria and body weight were determined every 2 weeks. At sacrifice (10 weeks) creatinine clearance was evaluated and remnant kidneys removed for histologic examination, Sirius red staining and in situ hybridization

Results: Systolic blood pressure increased progressively in both 5/6 NX groups. Halo slowed the increase in proteinuria in 5/6 NX rats. As expected, creatinine clearance was lower in 5/6 NX groups when compared to sham rats. Creatinine clearance was significantly higher in the NX-Halo group at the end of the study period. Histologic examination by light microscopy showed significantly less severe interstitial fibrosis and glomerulosclerosis in Halo-treated rats. The increase in collagen α1 (I) gene expression and collagen staining after nephrectomy was almost completely abolished by Halo.

Conclusions: Halofuginone reduced proteinuria as well as the severity of interstitial fibrosis and glomerulosclerosis in 5/6 NX rats. The renal beneficial effect of Halo was also demonstrated by the blunted decrease in creatinine clearance observed in the treated animals

IMAJ 2007;9:30–34

Most forms of chronic renal disease are characterized by the accumulation of extracellular matrix in glomeruli and interstitium, leading to renal fibrosis and chronic renal failure [1]. The histologic changes observed in rats with subtotal nephrectomy include mononuclear infiltration, glomerulosclerosis and tubulointerstitial fibrosis. An increase in the amount of type I, III and IV collagen and expansion of mesangial ECM has also been shown to occur in human and experimental models of kidney fibrosis [2]. Very few drugs are able to halt the fibrotic process in experimental and human chronic renal diseases.

Halofuginone, an alkaloid originally isolated from the plant Dichroa febrifuga, has been found, in animals and humans, to be a specific and potent inhibitor of the synthesis of collagen type I at the transcriptional level. In vitro, halofuginone attenuated collagen α1(I) gene expression by murine and avian skin fibroblasts and human skin fibroblasts derived from scleroderma and chronic graft-versus-host-disease patients [3]. In culture, halofuginone also inhibits rat mesangial cell proliferation and ECM production [4]. In animals, halofuginone prevented the increase in collagen synthesis in models of fibrosis involving skin, liver, urethra, heart, and surgical and traumatic adhesions [5]. Topical treatment using halofuginone in a patient with chronic graft-versus-host-disease caused a transient attenuation of collagen α1(I) gene expression, demonstrating clinical efficacy in humans [6]. In all these models halofuginone inhibited collagen α1(I) gene expression. Halofuginone affects collagen biosynthesis probably by blocking transforming growth factor-β-mediated smad3 activation [7]. In view of these findings, we assessed the effect of halofuginone on the development of glomerulosclerosis and tubulointerstitial fibrosis in rats following renal mass reduction.

Methods

All procedures were performed in accordance with institutional guidelines concerning animal experimentation. Male Wistar rats (weighing 300 ± 30 g at the start of the experiment) were used in this study. After acclimatization to their environment for 1 week, rats underwent either renal mass reduction by 5/6 nephrectomy or sham operation, under anesthesia with intraperitoneal injection of pentobarbital (35 mg/kg body weight). 5/6 NX was performed by ligation of two of three major branches of the left renal artery and right nephrectomy in the same session. Sham rats underwent exposition of the kidneys and removal of the perirenal fat. Twenty-four hours after the operation, rats were assigned to one of the following groups:

• NX-Halo (n=8): 5/6 NX rats receiving halofuginone by oral gavage (0.2 mg/kg/day)
• NX-Control (n=8): 5/6 NX rats receiving normal saline daily by oral gavage
Halofuginone Reduces Renal Fibrosis

There was a significant decrease in tubulointerstitial fibrosis, reached levels of 0.1% sirius red, with 0.1% fast green as a counterstain, in PBS buffer. Sera were then frozen at 70°C for 30 min. The sections were then rinsed in distilled water and treated with pronase (0.125 mg/ml in 50 mM Tris-HCl, 5 mM EDTA, pH 7.5) for 10 min. After digestion, the sections were then rinsed with distilled water, post-fixed in 10% formalin in PBS, blocked in 0.2% glycine, rinsed in distilled water, rapidly dehydrated through graded ethanol solutions, and air-dried for several hours. Before hybridization, the 1600 bp rat collagen α1(I) insert was cut out from the original plasmid (pUC18) and inserted into pSafyre. The sections were then hybridized with digoxigenin-labeled collagen α1(I) probe [11].

Statistical analysis
All results were expressed as mean ± SEM. Inter-group differences were analyzed by the Mann-Whitney U test within the SPSS system for Windows. A P value of less than 0.05 was considered statistically significant.

Results
After a small decrease during the first days following surgery in both nephrectomized groups, the increase in body weight was similar in NX-Halo and NX-Control groups, suggesting that food intake was similar in both groups throughout the course of the study (374 ± 11 vs 396 ± 28 g, respectively at 10 weeks). Plasma levels of halofuginone, as measured by HPLC, reached levels of around 1 ng/ml (levels that were found to be very potent in different successful animal models).

The influence of halofuginone on blood pressure, proteinuria and creatinine clearance
Systolic blood pressure increased progressively in both 5/6 NX groups. There was no significant difference between the two nephrectomized groups during the 10 weeks follow-up (179 ± 12 vs. 177 ± 23 mmHg, respectively, NX-Halo vs. NX-Control). No significant variation from baseline level was noted in the sham-operated group [Figure 1A].

The halofuginone-treated group had lower levels of proteinuria than the control nephrectomized group. This difference was statistically significant, beginning from week 4 post-nephrectomy (335 ± 47 vs 530 ± 72 mg/day, P < 0.05, NX-Halo vs. NX-Control, at 10 weeks) [Figure 1B].

As expected, creatinine clearance was lower in 5/6 NX groups when compared to sham rats. CCR was significantly higher in the NX-Halo group compared to the NX-Control group at the end of the study (0.44 ± 0.09 vs. 0.35 ± 0.07 ml/min, P < 0.05, NX-Halo vs. NX-Control) [Figure 1C].

Pathologic studies
Light microscopy. There was a significant decrease in tubulointerstitial fibrosis in the NX-Halo group when compared to the control group (NX-Control) (0.4 ± 0.2 vs 1.8 ± 0.2, P < 0.01 at 10 weeks). A less accentuated trend was noted for the presence of glomerulosclerosis and mesangial proliferation, due to milder...
sclerotic lesions in untreated nephrectomized rats (0.33 ± 0.5 vs 0.9 ± 0.1, respectively for NX-Halo and NX-Control, \(P < 0.01 \)). The sham-operated group showed no increase in either glomerulosclerosis or tubulointerstitial fibrosis at 10 weeks [Figure 2].

Sirius red staining and in situ hybridization. The kidney sections from 5/6 nephrectomized rats exhibited high levels of the collagen \(\alpha_1(I) \) gene expression compared with the sham rats, as demonstrated by **in situ** hybridization using the specific rat collagen \(\alpha_1(I) \) probe [Figure 3A and B]. Oral administration of halofuginone (0.2 mg/kg/day) resulted in significant reduction in the collagen \(\alpha_1(I) \) gene expression [Figure 3C]. The increase in collagen \(\alpha_1(I) \) gene expression after 5/6 nephrectomy was accompanied by an increase in the collagen content in the tubulointerstitium as demonstrated by specific collagen staining [Figure 4B]. The amount of collagen in the kidney sections was decreased in rats treated with halofuginone [Figure 4C].

Discussion

Efforts to prevent the progression of renal diseases have relied largely on the effects of diet, antihypertensive medications (particularly angiotensin-converting enzyme inhibitors), angiotensin II blockers or endothelin receptor antagonists, and anticoagulant drugs [12]. The mediators involved in the progression of renal fibrosis have been studied in various models of renal diseases [13]. Hemodynamic influences of AgII are well established, but more recent data have suggested pro-inflammatory properties and a role in the regulation of matrix degradation for Ag II [14]. Modulation of glomerular capillary hydrostatic pressure by ACE

ACE = angiotensin-converting enzyme
inhibitors and AgII receptor blockers has been proven to be efficient in experimental and human studies [15]. Different approaches have been evaluated to prevent or reduce renal fibrosis [12,16]. Effective therapy might include inhibition of fibroblast activation, inhibition of matrix synthesis and/or stimulation of matrix degradation. Inhibition of plasma activator inhibitor-1 activity and synthesis for the prevention or the treatment of renal fibrosis in vitro has recently been reported [17]. In genetic PAI-1 deficiency mice renal interstitial fibrosis was significantly attenuated in a model of unilateral ureteral obstruction [18]. These studies establish an important role for PAI-1 in renal fibrosis.

Renal fibrosis is characterized by excessive synthesis of connective tissue, and collagen is a major component of fibrotic lesions. Increased amounts of type I, III and IV collagen accompany the process of renal fibrosis. Particularly the low levels of type I collagen expression in normal kidney increases significantly after renal injury. As halofuginone inhibits the expression of collagen type I gene in a broad range of cell types, its use in different models of fibrosis has been proposed [5]. In the present study, we tested the effect of halofuginone in 5/6 nephrectomized rats and observed a significant reduction in interstitial fibrosis in the halofuginone-treated group. The effect on glomerulosclerosis was also significant, but we have to take into account the fact that glomerular sclerotic changes were not marked in this model. 5/6 nephrectomy was associated with increases in collagen α1(I) expression and collagen content, which is in agreement with previous studies demonstrating specific increases in type I collagen in injured tissues [5]. The collagen α1(I) expression and collagen content was almost completely abolished by administration of halofuginone. Northern Blot analysis of collagen 1 mRNA was not done in this study but was previously reported by our group in a different experimental model [19].

From the functional point of view, urinary protein excretion was lower and the decrease in creatinine clearance was partially blunted in halofuginone rats. As blood pressure values and body weight were similar in treated and untreated animals, the results demonstrate that the efficient action of halofuginone on the kidney was not mediated by changes in blood pressure or dietary protein intake.

Our results suggest that collagen I plays a significant role in the development of renal fibrosis, not only at the glomerular level but also, and perhaps especially, at the interstitial level.

The improvement in renal function and histologic lesions (mainly in the tubulointerstitium) contrasts with the persistence of relatively high levels of proteinuria. This discordance between proteinuria and progression of renal disease has been reported in previous animal models and suggests that different mechanisms are responsible for the development of renal fibrosis and proteinuria. We believe that the amelioration of tubulointerstitial fibrosis induced by halofuginone plays a dominant role in the partial preservation of renal function in this model. The mechanism by which halofuginone reduces fibrosis was recently elucidated in a mouse model for scleroderma (dermal fibrosis), where a low dose of halo blocked TGFβ-mediated SMAD3 activation in fibroblasts.
Furthermore, halofuginone inhibited the collagen synthesis by hepatic stellate cells and prevented the fibrosis-induced alteration in insulin-like growth factor binding proteins by hepatic cells [21]. Other treatments have been proposed to depress the production of collagen, but most are non-specific, leading to a generalized reduction of several collagen molecules [16]. Interferon-gamma also delays the occurrence of fibrosis in 5/6 nephrectomized rats, however the lack of specificity of IFNγ interferes with the normal process of elastogenesis and bone formation, leading to severe side effects [22]. Recent in vitro studies have shown that halofuginone inhibits mesangial cell proliferation and ECM production, suggesting that halofuginone may also have a protective action in inflammatory glomerular disease characterized by mesangial cell proliferation and ECM expansion [4].

In conclusion, halofuginone, a collagen I inhibitor, has been shown to reduce renal fibrosis and proteinuria in the experimental model of 5/6 nephrectomy in rats. Such action was independent of blood pressure changes. Further studies are being performed in different models of renal diseases to confirm this beneficial and promising effect.

References

Correspondence: Dr J. Bernheim, Dept. of Nephrology and Hypertension, Meir Hospital, Sapir Medical Center, Kfar Saba 44281, Israel.
Phone: (972-9) 747-2517
Fax: (972-9) 741-6918
email: Nephrol@clalit.org.il

Few people think more than two or three times a year. I’ve made an international reputation for myself by thinking once or twice a week

George Bernard Shaw (1856-1950), Irish dramatist and critic, and Nobel Literature laureate

Honest criticism is hard to take, particularly from a relative, a friend, an acquaintance, or a stranger

Franklin P. Jones (1998-1929), U.S. humorist