Mild Rheumatic Mitral Regurgitation in the Presence of Dominant Stenotic Pliable Valve: An Echocardiographic Structural Valve Analysis in Patients Undergoing Balloon Valvuloplasty

Yoav Turgeman MD¹, Alexander Feldman MD¹, Khaled Suleiman MD¹, Limor I. Bishari MD¹, Idit Lavi BA² and Lev Bloch MD¹

¹Heart Institute, Emek Medical Center, Afula, Israel
²Department of Biostatistics, Carmel Medical Center Haifa, Israel
Both affiliated with Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel

ABSTRACT:

Background: Understanding the mechanism and the main components involved in rheumatic mitral regurgitation (MR) associated with dominant pliable mitral stenosis (MS) may improve our ability to repair some mixed rheumatic mitral valve pathologies.

Objectives: To assess mitral valve structural components in pure mitral stenosis versus mitral stenosis associated with mild regurgitation.

Methods: Using two-dimensional echocardiography, we performed mitral valve structural analysis in two groups of patients prior to balloon mitral valvuloplasty (BMV). The first group, consisting of 13 females and 2 males (mean age 39 ± 5 years), suffered from pure pliable mitral stenosis (PPMS), while the second group, with 22 females and 2 males (mean age 44 ± 5 years), had mixed mitral valve disease (MMVD) characterized by mild MR in the presence of dominant pliable MS. All echocardiographic measurements relating to the mechanism of MR were undertaken during the systolic phase.

Results: The mean Wilkins scores of the PPMS and MMVD groups were 7 ± 1 and 8 ± 1 respectively (P = 0.004). No significant differences were found between the MMVD group and the PPMS group regarding annular circumference (15.5 ± 1.4 cm vs. 15.4 ± 1.6 cm, P = 0.84), annular diameter (36 ± 4 mm vs. 38 ± 5 mm, P = 0.18), and chordae tendinae length directed to the anterior mitral leaflet (AML) (10 ± 2 mm vs. 11 ± 2 mm, P = 0.137). However, anterior vs. posterior mitral leaflet length during systole was significantly lower in the MMVD than in the PPMS group (2.2 ± 0.5 vs. 2.8 ± 0.4, P = 0.02), whereas the AML thickness at the co-aptation point was greater in the MMVD than in the PPMS group (7 ± 1 vs. 5 ± 1 mm, P = 0.0004).

Conclusions: In rheumatic valves, thickening and shortening of the AML are the main factors determining the appearance of mild MR in the presence of dominant pliable MS.

KEY WORDS: rheumatic mixed valvular pathology, mitral regurgitation (MR), mitral stenosis (MS), mitral valvuloplasty, valve repair

Mixed rheumatic valvular disease is considered the most complex lesion treated by preservation therapeutic modalities [1]. This type of pathology, where different valvular structural components may undergo damage of variable intensity and severity [2], presents a therapeutic challenge for both cardiac surgeons and interventional cardiologists. Specifically in the context of percutaneous balloon valvular dilatation, where angiographic mitral regurgitation > 2/4 is considered an absolute contraindication for this procedure [3], the immediate result of this technique in the presence of mild to moderate mitral regurgitation is multifactorial, depending mainly on valve morphology [4]. Therefore, in order to plan and manage an optimal therapeutic approach in this group of patients characterized by mixed valvular pathology, the contribution of every structural element to this pathophysiology and its potential correction by any of the available therapeutic conservative modalities should be carefully evaluated.

The aim of our study was to focus on two groups of rheumatic patients who today can potentially be treated by either surgical or percutaneous conservative approaches: patients with pure pliable mitral stenosis and patients with mixed mitral valve disease characterized by pliable MS and mild mitral regurgitation. In view of the difference in valvular structure between these two groups and understanding the basic functional valve abnormalities may clarify the curative approach needed in other large variations of mixed rheumatic mitral valve pathologies.

PATIENTS AND METHODS

Sixty-four technically successful balloon mitral valvuloplasties were performed in our institute between January 2008 and December 2009. All procedures were undertaken using the trans-septal antegrade approach with the Inoue balloon catheter (Toray Industries Inc., Tokyo, Japan) and the step-wise approach needed in other large variations of mixed rheumatic mitral valve pathologies.
dilatation technique [5]. Balloon diameter was determined by
the patient’s height [6].

All medical files and pre-procedural trans-thoracic echocar-
diographic data were retrospectively evaluated regarding pli-
able MS associated with or without mild MR in order to divide
the patients into two groups: the first comprising patients with
PPMS and the second with MMVD. We excluded patients
who had had previous surgery or balloon dilatation, patients
with additional significant valvular pathology with either left
ventricular dilatation or dysfunction, and patients who had
concomitant coronary artery disease or persistent atrial fibril-
lation. We included only patients in whom all echoangiographic
structural analysis had been completed.

Following this screening, the study group comprised 39
patients who fulfilled the criteria of clinically pliable MS
with or without associated mild MR by TTE criteria, i.e.,
jet area ≤ 4 cm² and vena contracta < 3 mm [7]. Based on
these criteria, 24 patients were diagnosed with MMVD and
15 patients with PPMS.

TTE EVALUATION

GENERAL ASSESSMENT
All TTE examinations were performed using Acuson-
Sequoia-C 256 before, during and 24 hours after balloon
valvular dilatation. Pre- and post-BMV mitral valve area
(in cm²) was determined by plannimetry. For pre-procedure
TTE, the Wilkins’ score [8] and posterior leaflet mobility
were determined [9]. Post-procedure MVA, MR grade,
including central or eccentric jet direction, were determined
in both groups.

PRE-BMV MITRAL VALVE STRUCTURE ANALYSIS IN RELATION TO MILD MR
To explore structural differences between the two groups
regarding pre-procedure MR, off-line analysis was performed
using the Medcon measurement functions. Standard paraster-
nal long and short axis views, including the modified views
exploring the sub-valvular apparatus, were performed [10]. The
following parameters were measured during end-systolic phase
as determined by electrocardiographic signal:

• **Annular circumference (cm):** measured in the parasternal short
 axis view at commissural level along the epicardial borders

• **Annular diameter (mm):** measured in the apical four-
 chamber view between the hinges points of anterior and
 posterior mitral leaflets

• **Anterior and posterior mitral leaflet length (AML & PML)
 (cm):** measured in the parasternal long axis view from the
 hinges point towards the co-aptation point of each leaflet
 respectively

• **AML thickness (mm):** measured in the parasternal long axis
 view at the co-aptation point (rough zone segment)

• **Chordae tendine length directed towards AML (mm):** originat-
 ing from both papillary muscles and inserted in the
 ventricular aspect of anterior leaflet at the rough zone – measured from both posterior and anterior papillary
 muscles by using the modified long axis view. The average
 chordae tendine length measured from the two papillary
 muscle systems was calculated.

STATISTICAL ANALYSIS
All continuous parameters are presented as mean ± stan-
dard deviation (SD) and were analyzed by the Student t-test.
Categorical variables are expressed as a number of patients
and percentages and are analyzed by Fisher’s exact test.
Differences were considered significant at \(P \leq 0.05 \).

RESULTS
Patients’ baseline clinical characteristics are presented in Table
1. The patients with PPMS were younger than patients with
MMVD: mean age 39 ± 5 vs. 44 ± 6 years respectively (\(P =
0.01 \)). Most patients in both groups were women in New York
Heart Association class III. No patients in the MMVD group
were in NYHA class IV. None of the patients in either group
showed calcific foci related to the mitral valve apparatus when
examined by cardiac fluoroscopy.

<table>
<thead>
<tr>
<th>Table 1. Patients’ baseline clinical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPMS (n=15)</td>
</tr>
<tr>
<td>Age (yrs)</td>
</tr>
<tr>
<td>Females (%)</td>
</tr>
<tr>
<td>NYHA class (%)</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Balloon/annulus diameter ratio</td>
</tr>
</tbody>
</table>

PPMS = pure pliable mitral stenosis, MMVD = mixed mitral valve disease,
NYHA = New York Heart Association classification

The TTE characteristics of both groups are presented in Table
2. The mean total Wilkins score of the PPMS group
compared to the MMVD group was 7 ± 1 and 8 ± 1 respec-
tively (\(P = 0.004 \)). Based on this score, near normal anterior
mitral leaflets were detected in 12/15 (80%) of PPMS patients
vs. 4/24 (17%) in the MMVD group (\(P = 0.003 \)). Thickened
margins of the anterior leaflet were detected in 20/24 patients
(83%) in the MMVD group, but in only 3/15 (20%) in the PPMS group. No patient showed marked thickening of the entire leaflet, and no difference was found between the groups relating to the incidence of frozen posterior mitral leaflets.

Pre-BMV mitral valve structural analyses relating to the mechanism of MR are presented in Table 3. There was no difference between groups regarding MV annular circumference. However, patients in the MMVD group exhibited a smaller AMLL/PMLL (anterior mitral leaflet length/posterior mitral leaflet length) ratio when compared with the PPMS group (2.2 ± 0.5 vs. 2.8 ± 0.4, \(P = 0.02 \)). This indicates the presence of a relatively shorter length of AML in the MMVD group. The MMVD group demonstrated thickened AML edges compared to the PPMS group (7 ± 1 and 5 ± 1 mm respectively, \(P = 0.0004 \)).

DISCUSSION

Understanding the mechanism and pathophysiology of valve disorder is essential for determining the optimal therapeutic approach [11]. In the presence of mixed valvular pathology, i.e., stenosis and regurgitation, the dominant lesion should be determined and careful structural valve analysis performed before either a curative or palliative therapeutic approach.

According to the European guidelines on the management of valvular heart disease, mild rheumatic MR is not a contraindication for BMV [12]; however, assessing the mechanism of regurgitant pathology in the presence of MS is essential for extending our understanding of MR in the presence of other varieties of mixed valvular pathology. In their study of the spectrum of severe rheumatic mitral valve disease in developing countries, Marcus et al. [13] noted that mixed valvular pathology is present in a third of these patients. Pure regurgitation was the most common lesion in the first and second decades, whereas the relative prevalence of pure stenosis increased with age. Purely regurgitant valves had pliable unscarred leaflets (95%), dilated mitral annuli (95%), elongated chordae tendinae (92%) and anterior leaflet prolapse (81%). In contrast, pure stenotic valves had fused commissures (100%) and rigid leaflets (38%) but no evidence of prolapse. There was no anatomic description of mitral structural components regarding different varieties of regurgitation as a part of mixed pathology in that study.

Our data show that mild regurgitation associated with pliable stenotic mitral valve is characterized by a relatively shorter and thickened anterior mitral leaflet. Similar to other studies [4,14], our findings reemphasize the safety of BMV in patients with dominant pliable MS associated with mild MR. However, it should be remembered that these patients are older and have a relatively higher Wilkins score than the patients with isolated pure pliable MS.

During BMV the appearance of a new MR or the increase of a previously mild MR is quite frequent (30–50%), but fortunately the development of clinically significant MR is much rarer (4–12%). Generally, the anatomic substrate of severe MR is leaflet rupture and less frequently damage to the subvalvular apparatus [15]; therefore, in our daily practice we avoid performing BMV in the presence of mild MR in patients with thick, rigid or calcific AML or in the presence of bilateral commissural calcification.

At present, short leaflets cannot be extended by percutaneous techniques. However, a surgical solution for this structural abnormality has been proposed by Chauvaud et al. [16] in which valve extension with glutaraldehyde-preserved autolo-

Table 2. TTE characteristics

<table>
<thead>
<tr>
<th></th>
<th>PPMS (n=15)</th>
<th>MMVD (n=24)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilkins score</td>
<td>7 ± 1</td>
<td>8 ± 1</td>
<td>0.004</td>
</tr>
<tr>
<td>Normal leaflet thickness ≤ 4 mm (%)</td>
<td>12/15 (80)</td>
<td>4/24 (17)</td>
<td>0.003</td>
</tr>
<tr>
<td>FPML (%)</td>
<td>13/15 (87)</td>
<td>21/24 (88)</td>
<td>NS</td>
</tr>
<tr>
<td>MVA (cm²)</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Pre-BMV</td>
<td>None</td>
<td>24 (100%)</td>
<td>4/20</td>
</tr>
<tr>
<td>MR pre-BMV</td>
<td>None</td>
<td>24 (100%)</td>
<td>4/20</td>
</tr>
<tr>
<td>Jet direction: central/eccentric</td>
<td>0/6</td>
<td>22/24 (92%)</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

FPML = frozen posterior mitral leaflet, MVA = mitral valve area, BMV = balloon mitral valvuloplasty, MR = mitral regurgitation

Table 3. Pre-BMV mitral valve structural components in both groups

<table>
<thead>
<tr>
<th></th>
<th>PPMS (n=15)</th>
<th>MMVD (n=24)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annular circumference (cm)</td>
<td>15.4 ± 1.6</td>
<td>15.5 ± 1.4</td>
<td>0.84</td>
</tr>
<tr>
<td>Annular diameter (mm)</td>
<td>38 ± 5</td>
<td>36 ± 4</td>
<td>0.18</td>
</tr>
<tr>
<td>AMLL/PMLL (cm)</td>
<td>2.8 ± 0.4</td>
<td>2.2 ± 0.5</td>
<td>0.02</td>
</tr>
<tr>
<td>AMLT (mm)</td>
<td>5 ± 1</td>
<td>7 ± 1</td>
<td>0.0004</td>
</tr>
<tr>
<td>CTL (mm)</td>
<td>11 ± 2</td>
<td>10 ± 2</td>
<td>0.137</td>
</tr>
</tbody>
</table>

AMLL = anterior mitral leaflet length, PMLL = posterior mitral leaflet length, AMLT = anterior mitral leaflet thickness, CTL = chordae tendinae length

POST-BMV DATA

Non-optimal valve dilatation indicated by final MVA < 1.5 cm² was detected in 2/15 patients (13%) in the PPMS group and in 5/24 (21%) in the MMVD group (\(P = 0.34 \)). Post-valvuloplasty, 6/15 of patients (40%) in the PPMS group demonstrated mild MR, whereas 2/24 (8%) in the MMVD group showed no MR post-procedure. No patient in the MMVD group demonstrated significant deterioration of MR after valvular balloon dilatation. All the regurgitant jets that appeared after valve dilatation in the PPMS group were eccentric (opposite to the central jet).
gous pericardium is performed during mitral valve repair.

In contrast to our patients, who are characterized by domin-
ant stenotic lesion, in patients with predominant rheumatic
MR the main steps in reconstructive surgery are ring annul-
opasty and chordae shortening [17]. This indicates that in a dif-
f erent rheumatic setup, other valve components are involved
in the regurgitant pathophysiology.

Our data also emphasize that BMV may act ambiguously in
relation to MR: on the one hand, it may create MR in a man-
ner similar to surgical commissurotomy. However, it may also
abolish or decrease preexisting MR. Both phenomena indicate
that commissural morphology and function may also play a
role in the mechanism of rheumatic MR.

In conclusion, careful evaluation of mitral valve structural
components together with awareness of the limitations of each
therapeutic approach can improve our ability to repair rheu-
matic valves either percutaneously or surgically.

References
1. De Oliveira JMF, Antunes MJ. Mitral valve repair: better than replacement.
 Heart 2006; 92: 275-81.
2. Schoen EJ, Sutton MJ. Contemporary pathologic consideration in valvular
3. Abascal VM, Willkins GT, Chooung CY, Block PC, Palacios IF, Weyman AE.
 Mitral regurgitation after percutaneous balloon mitral valvuloplasty in adults
 evaluated by pulsed Doppler echocardiography. J Am Coll Cardiol 1988; 11:
 257-63.
 mitral stenosis associated with moderate mitral regurgitation. Am J Cardiol
5. Inoue K, Hung JS. Percutaneous transvenous mitral commissurotomy
6. Inoue K, Chen CR, Hung JS. Percutaneous transvenous mitral
 commissurotomy guided and assessed by echocardiography. In: Cikes I,
8. Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Percutaneous
 balloon dilatation of the mitral valve: an evaluation of echocardiographic
 variables related to outcome and the mechanism of dilation. Br Heart J 1988;
 60: 299-308.
 rheumatic pliable mitral stenosis: incidence and impact on outcome of
 anatomy of the normal mitral apparatus: a transthoracic, two-dimensional
 management of patients with valvular heart disease: focused update on
 valvular heart disease. The task force on the management of valvular heart
13. Marcus RH, Sareli P, Pocok WA, Barlow JB. The spectrum of severe rheumatic
 mitral valve disease in a developing country: correlation among clinical
 presentation, surgical pathologic findings and hemodynamic sequelae. Ann
14. Palacios IF, Tuzcu ME, Weyman AE, Newell JB, Block PC. Clinical follow-
 up of patients undergoing percutaneous mitral balloon valvuloplasty. Circulation
 outcome of severe mitral regurgitation complicating percutaneous mitral
 glutaraldehyde-preserved autologous pericardium: results in mitral valve
 Long-term (29 years) results of reconstructive surgery in rheumatic mitral

An integrated encyclopedia of DNA elements in the human genome

The human genome encodes the blueprint of life, but the
function of the vast majority of its nearly three billion bases
is unknown. The Encyclopedia of DNA Elements (ENCODE)
project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and
histone modification. These data enabled the authors
to assign biochemical functions for 80% of the genome,
in particular outside of the well-studied protein-coding
regions. Many discovered candidate regulatory elements are
physically associated with one another and with expressed
genes, providing new insights into the mechanisms of
gene regulation. The newly identified elements also show
a statistical correspondence to sequence variants linked
to human disease, and can thereby guide interpretation of
this variation. Overall, the project provides new insights into
the organization and regulation of our genes and genome
and is an expansive resource of functional annotations for
biomedical research.

Nature 2012; 489: 57
Elitzan Israeli

The only sure thing about luck is that it will change

Wilson Mizner (1876-1933), American playwright