Pheochromocytoma: Progress and Challenges

Yehonatan Sharabi MD FAHA
Hypertension Unit, Sheba Medical Center, Tel Hashomer affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

KEY WORDS: pheochromocytoma, bladder, hypertension, metanephrines

Pheochromocytoma is a rare cause of hypertension but is often sought in the workup of secondary hypertension in appropriate subjects, since such a diagnosis provides an opportunity to offer definitive treatment for a disease that is otherwise incurable in most cases and involves chronic use of multiple medications.

Despite progress over the last decade in our ability to detect, localize and treat pheochromocytoma, the most important aspect remains the initial clinical suspicion. In their report in this issue of *IMAJ*, Zeitlin et al. [1] present the case of a malignant paraganglioma of the bladder in a patient with a 12-year history of hypertension and a few incidents of life-threatening hypertensive crises. Once the patient was under their care, the clinical suspicion of pheochromocytoma was raised and a series of biochemical and imaging procedures followed which confirmed the diagnosis.

The typical triad of severe headache, palpitations and diaphoresis accompanying episodes of high blood pressure should lead one to suspect pheochromocytoma. Nevertheless, most subjects with this combination do not have a pheochromocytoma. Several clinical conditions can mimic pheochromocytoma; the most typical mimicking condition is pseudopheochromocytoma [2]. This condition is related to increased adrenergic sensitivity rather than increased circulating catecholamines. Therefore, the most important first step is to rule out pheochromocytoma.

Over the last decade data have accumulated with regard to the role of free plasma metanephrines as a screening test for this condition [3,4]. This test has essentially 100% sensitivity in symptomatic patients, which means an ideal negative predictive value and no further workup is needed after a single blood test. In centers where this test is not available, repeated (twice) normal 24-hour urinary collections for both metanephrines and catecholamines have a 95% negative predictive value. Other biochemical tests such as urinary VMA (vanillylmandelic acid) have low sensitivity and should be abandoned since they have no role in the decision-making process.

It is important to note that plasma metanephrines can be relied on only if determined by HPLC (high-performance liquid chromatography) or LCMS (liquid chromatography-mass spectrometry). All other commercially available kits for plasma metanephrines do not have sufficient sensitivity for the purpose of ruling out pheochromocytoma definitively because of detection of conjugated as well as free metanephrines.

Positive results of the screening tests are followed by confirmatory tests. Until recently clonidine suppression and glucagon stimulation tests were used [5]. Glucagon exerts a specific effect on pheochromocytoma cells and not normal chromaffin cells [6]. However, in a study of 64 subjects, half with pheochromocytoma, we found that it adds very little to the clonidine suppression test; on the other hand, injecting glucagon can elicit a severe increase in blood pressure [7]. Therefore, the glucagon test should also be abandoned for confirming the diagnosis of pheochromocytoma, but the clonidine suppression test can be used.

With regard to localization, Zeitlin et al. [1] listed the various options of imaging studies. One must ensure that if a CAT scan is ordered for the localization of a tumor the request should specifically note “fat suppressed.” This allows the radiologist to provide the maximum information from the imaging study. To look for primary tumors and metastases 123I-MIBG scanning is indicated. A negative scan does not exclude pheochromocytoma, however. The authors mention 18F-dopamine positron emission tomography scanning, but this is currently available only at the U.S. National Institutes of Health and is a research test. An alternative is 18FDG PET scanning, which together with the biochemical results make the diagnosis of pheochromocytoma very likely and can serve as a means to exclude the presence of metastases when surgery is considered.

In the case presented here the pathological diagnosis was paraganglioma. Paraganglioma shares many features with pheochromocytoma, both clinically and pathogenetically. It is indeed a neuroendocrine tumor arising from the sympathetic nervous system, but unlike pheochromocytoma its cells are negative for chromaffin. It is usually found in the neck, most commonly from the carotid body, and only in rare reported cases was paraganglioma found in other sites, such as in the mediastinum and abdominal cavity. Paraganglioma of the urinary bladder is extremely rare. Malignant paraganglioma is also rare. Malignant paraganglioma...
glioma of the bladder is therefore exceedingly rare, and the diagnosis was made solely because of clinical suspicion and the appropriate workup by Drs. Zeitlin and colleagues.

Future studies are now directed at exploring the molecular basis of the various forms of pheochromocytoma. We hope that this new avenue will lead to the development of better strategies to detect and treat malignant pheochromocytoma where we often fail, as this challenging case demonstrates.

References

Capsule

HLA-DPB1-COL11A2 and three additional xMHC loci are independently associated with RA in a UK cohort

Orozco et al. investigated the complex association pattern of the extended major histocompatibility complex (xMHC) region with rheumatoid arthritis (RA) susceptibility to identify effects independent of HLA-DRB1. High-resolution HLA-DRB1 typing was performed. The subjects, 1804 RA cases and 1474 controls, were genotyped for 1546 single-nucleotide polymorphisms (SNPs) using Affymetrix GeneChip 500K as part of the Wellcome Trust Case Control Consortium Study. To avoid confounding by RA-associated HLA-DRB1 alleles, the authors analyzed xMHC SNPs using a data set with pairwise matching of cases and controls on DRB1 genotypes. A total of 594 case-control pairs with identical DRB1 genotypes were identified. After this adjustment, 104 SNPs remained significantly associated with RA, suggesting that additional RA loci independent of HLA-DRB1 can be found in the xMHC region. Of these, four loci showed the strongest associations with RA: ZNF391, the olfactory receptor (OR) gene cluster, C6orf26-RDPB and HLA-DPB1-COL11A2. An additional locus mapping to the BTN (butyrophilin) cluster showed independent association with RA in anti-cyclic citrullinated peptide-positive patients exclusively. The investigators validated the previously described independent association of the HLA-DPB1-COL11A2 locus with RA. In addition, association with three novel independent RA loci in the xMHC region (ZNF391, OR2H1 and C6orf26-RDPB) was detected.

Genes Immun 2011; 12: 169

Eitan Israeli

Capsule

Blood cells as signs for heart transplant rejection

Recipients of heart transplants are treated with powerful immunosuppressants to prevent organ rejection, but complications still occur. Early signs of rejection are often monitored by an invasive procedure that requires heart tissue biopsy. A non-invasive diagnostic test was recently approved in the United States, in which blood cells from heart transplant recipients are monitored for the expression of genes associated with immune-mediated rejection. Snyder et al. have designed a potentially complementary non-invasive test based on the concept that during organ rejection, dying cells in the organ release donor DNA that might be detectable in the recipient’s bloodstream by high-throughput sequencing methods. In a small proof-of-principle study of archived blood samples from heart transplant recipients, the authors showed that the level of cell-free donor DNA in the recipient’s blood increased substantially when there was an acute cellular rejection episode and then declined again once the patient received more aggressive treatment. Although an encouraging start, the predictive value of this test will become clear only from much larger studies in which its performance is compared with that of biopsies and with conventional clinical measures of heart function, such as echocardiograms.

Proc Natl Acad Sci USA 2011; 108: 6229

Eitan Israeli

“Gentlemen, we have run out of money. Now we have to think”

Winston Churchill (1874-1965), British politician, statesman, writer and orator