Human Brucellosis Outbreak Acquired through Camel Milk Ingestion in Southern Israel

Shalom Ben Shimol MD1,2, Larissa Dukhan MD3, Ilana Belmaker MD3, Svetlana Bardenstein DVM PhD4, David Sibirsky MD2, Chiya Barrett MSc2 and David Greenberg MD1,2

1Pediatric Infectious Disease Unit, Soroka University Medical Center and 2Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
3Ministry of Health, Southern Regional Office, Beer Sheva, Israel
4Department of Bacteriology, Kimron Veterinary Institute, Beit Dagan, Israel

ABSTRACT: Background: Human brucellosis is common in southern Israel among the semi-nomadic Bedouin, a population that consumes unpasteurized dairy products. Though camel milk ingestion is a known mechanism for brucellosis acquisition, only a few reports of sporadic cases have been published in the medical literature.

Objectives: To describe a local brucellosis outbreak in 15 extended Bedouin family members, following ingestion of infected camel milk.

Methods: Data regarding patient’s clinical manifestations, laboratory findings, treatment and outcome were collected from the hospital and the health fund clinics’ computerized database. Camel’s blood and milk were tested for Brucella serology and culture. Cases were defined by positive Rose Bengal test, symptoms correlating with brucellosis, and consumption of infected camel milk.

Results: Fifteen patients were diagnosed with acute brucellosis from March to June 2011. Sixty percent of cases had serum agglutination test titers of 1:160 or higher and 4/8 (50%) had positive blood culture for Brucella melitensis. Arthralgia and fever were the most consistent clinical manifestations. Blood and milk serology and milk culture taken from the female camel were positive for Brucella melitensis.

Conclusions: The treating physicians must consider the possibility of infected camel milk ingestion as the mode of infection, both in sporadic cases and in outbreaks of brucellosis.

KEY WORDS: brucellosis, camel milk, outbreak, Brucella melitensis

Brucellosis is a common zoonosis around the world, affecting humans and several domestic animals including sheep, goats, cows and camels. The main sources of infection are food-borne, usually through the consumption of contaminated dairy products, and occupational exposure, occurring in veterinarians or abattoir workers [1]. Human cases of brucellosis acquired by camel milk ingestion have been reported only sporadically and never in Israel [2-8].

Brucella melitensis infections are common in southern Israel among herds of sheep and goats and cause substantial human morbidity in the semi-nomadic Bedouin population of the area that consumes unpasteurized dairy products [9]. We report a local brucellosis outbreak in 15 extended Bedouin family members following ingestion of infected camel milk.

PATIENTS AND METHODS

In June 2011, three siblings were hospitalized with brucellosis in the pediatric department of the Soroka Medical Center. All children complained of prolonged fever (> 1 month) and one child reported weakness and arthralgia. Family history revealed that a sibling, a father and a grandmother had been diagnosed with brucellosis 1 week, 2 weeks and 2 months earlier, respectively.

Since laboratories in Israel are required by law to report all cases of brucellosis to the Ministry of Health, we decided to conduct an epidemiologic survey to discover the outbreak source. Further investigation by questioning family members and their primary physician revealed an additional nine symptomatic family members. Overall, 15 patients were identified. The infected family had raised a female camel and a camel calf during the previous 7 months, believing that camel milk has a beneficial health effect for the family.

The family lives in a closed compound (surrounded by a fence) that contains four houses; the two camels were held in an adjoining backyard. Only family members living in this compound had direct contact with the camels, but unpasteurized camel milk was consumed by most family members (all infected cases).

We collected patient data from the hospital and the health fund clinics’ computerized database. These included data regarding patients’ complaints (fever, arthralgia, weight loss and weakness), clinical manifestations (fever, hepatosplenomegaly), laboratory findings (Brucella serology, including the
Rose Bengal test, immunoglobulin M and G, blood cultures, hemoglobin, leukocytes, thrombocytes and liver enzymes) and outcome (hospitalization). Data regarding the camels’ serology and cultures were obtained from the brucellosis laboratory, Kimron Veterinary Institute, Beit Dagan.

Sera from all cases were screened for Brucella antibodies by the Rose Bengal test [10]. Positive specimens were serially diluted from 1:20 up to 1:1280 and tested by the standard agglutination test [11]. Blood cultures were obtained, using the Bactec 9240 system (Becton Dickinson, Cockeysville, MD, USA), within 48 hours of the serologic tests, as reported before [12]. All blood cultures were incubated for 7 days. The camel bloods were tested for Brucella by three conventional serological methods: RBT, complement fixation and serum agglutination tests. Camel milk samples were tested by the milk ring test and cultured bacteriologically [13]. The strains isolated were further characterized by phage typing and biochemical tests. The sero-agglutination test of the strains by anti-A and anti-M monospecific sera was used in the biotyping of the Brucella isolates [13]. Cases were defined by a positive RBT, symptoms correlating with brucellosis of either fever or arthralgia, and consumption of infected camel milk.

RESULTS

Outbreak description

Between March 2011 and June 2011, 15 Human cases of brucellosis were identified. Ten were children (age range 1–15 years) and 5 were adults (33–61 years), all members of one extended family [Table 1].

The first two patients had been symptomatic since March 2011, a third patient became symptomatic in the first week of June, and 2 weeks later three children were hospitalized due to symptoms correlating with brucellosis. All patients had a positive RBT and in 9 cases (60%) IgM titers were positive (≥ 1:160). IgG titers were identical to the IgM titers in all 15 patients.

Blood cultures were taken from eight patients and in four cases Brucella melitensis biotype 1 was grown (overall seven positive cultures: two in three patients and one in one patient). All positive isolates were grown within 96 hours of sampling.

The female camel blood tested positive on the RBT, complement fixation test (1:320) and serum agglutination test (1:1280). Camel milk tested positive on the milk ring test. Brucella melitensis biotype 1 grew in milk culture. Serologic tests of the camel calf were negative for Brucella.

Following these results, the female camel was slaughtered and the camel calf, which tested negative for Brucella, was confiscated by the Ministry of Agriculture.

Clinical manifestations

Arthralgia (13/15) and fever (12/15) were the most consistent clinical manifestation. Weakness (3/15), diarrhea, vomiting and abdominal pain (4/15), cough and shortness of breath (3/15), rash (1/15) and night sweats (1/15) were also reported. Hepatosplenomegaly was not reported.

Laboratory findings

Elevated liver enzymes (alanine or aspartate aminotransferase > 35 U/L) were noted in six of the eight patients and anemia (hemoglobin < 12 g/dl) in three of seven cases. None of the patients had leukocytosis, leukopenia or hyperbiliirubinemia.

Treatment regimens

Data regarding treatment were available for 13/15 cases. Children < 8 years old (four cases) were treated with co-trimoxazole and gentamicin. Children > 8 years old (five cases) were treated with doxycycline and gentamicin (two cases), doxycycline and streptomycin (two cases), or co-trimoxazole and gentamicin (one case).

Adults > 18 years old (four cases) were treated with doxycycline and streptomycin (three cases), except for a pregnant patient who was treated with co-trimoxazole.

Outcome

Six patients (40%) were hospitalized for 2–7 days and were treated with antibiotics, without any other interventions [Table 1]. During 3 months of follow-up there were no cases of mortality.

DISCUSSION

Transmission of brucellosis to humans can occur through the consumption of infected unpasteurized camel milk, but only a few reports, all of sporadic cases, were published in the medical literature [2-8].

This report, describing a local human brucellosis outbreak, emphasizes the importance of awareness that ingestion of unpasteurized camel milk can serve as a mode of infection. The Bedouin population of southern Israel is at increased risk for acquiring brucellosis due to frequent contact with domestic animals and ingestion of unpasteurized animal milk.

The incidence rate of brucellosis in the Bedouin population in southern Israel was 49.4/100,000 in 2009 compared to the 1.8/100,000 nationwide incidence rate (Ministry of Health data). The high incidence rate of brucellosis in the Bedouin population could be attributed to lack of awareness regarding the nature of disease, modes of transmission and prevention methods.

Between 1998 and 2001, the local office of the Health Ministry initiated an educational community-based program aimed to increase awareness in the Bedouin population.
of the nature of disease, modes of transmission, and prevention methods including livestock vaccination. Evaluation of this program demonstrated a significant increase in the population's knowledge about brucellosis and its prevention methods, but there were no positive behavior changes (e.g., avoiding unpasteurized animal milk and not wearing gloves when in contact with animals).

Camels are highly susceptible to brucellosis caused by *Brucella melitensis* and *Brucella abortus*, but this disease provokes only a few clinical signs in camels in contrast to its clinical course in cattle [14]. Furthermore, the greatest risk of Brucella transmission was associated with products derived from sheep as opposed to camels [7]. This could explain the low prevalence of brucellosis attributed (by both the Bedouin population and physicians) to camel milk consumption.

The diagnosis of brucellosis relies mainly on serology. A positive RBT could be attributed to previous exposure to Brucella and not necessarily to recent infection. To avoid ‘over-diagnosis’, IgM titers of ≥ 1:160 are considered diagnostic [15]. We found one patient with two positive blood cultures for *Brucella melitensis* and low antibody titers, thus proving confirmed brucellosis with false negative serology. This patient was symptomatic 2 months before blood tests were performed. This suggests that a combination of epidemiologic and clinical findings should be used for brucellosis diagnosis, even in serological “unproven” cases.

Conclusions
The treating physician should consider the possibility of infected camel milk ingestion as the mode of infection, both in sporadic cases and in outbreaks of brucellosis.

Corresponding author:
Dr. S. Ben Shimol
Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva 84101, Israel
Phone: (972-8) 640-0547
Fax: (972-8) 623-2334
email: shalomb2@clalit.org.il

References

<table>
<thead>
<tr>
<th>Table 1. Demographic and clinical manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient no.</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

ALT = alanine aminotransferase, AST = aspartate aminotransferase, NA = not available
Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, Zinzow-Kramer and team created CIITA mutant mice in which pI and the CARD-encoding exon were deleted. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

Genes Immunity 2012; 13: 299
Eitan Israeli

The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Song and fellow authors show that four transcription factors, GATA4, HAND2, MEF2C and TBX5, can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. These results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules.

Nature 2012; 485: 599
Eitan Israeli