Intraoperative Radiotherapy for Breast Cancer

Arie Bitterman MD1, Rivka Kessner MD1, Iudita Goldman MD3, Eitan Shiloni MD2 and Mariana Steiner MD4

Departments of 1Surgery A, 2Surgery B and 3Mammography-Radiology, and 4Oncology Service, Carmel Medical Center, affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

KEY WORDS: breast cancer, intraoperative radiotherapy, partial-breast radiotherapy, whole-breast radiotherapy

For Editorial see page 254

With one million new cases each year worldwide, breast cancer is the most common malignancy in women. Constituting 18% of all cancers in woman, breast cancer also accounts for approximately 30% of all malignancies diagnosed in the United States. Breast-conserving therapy is widely accepted as an effective treatment option for patients with early-stage carcinomas of the breast [1,2].

The conventional treatment for early breast cancer includes wide local excision, sentinel lymph node biopsy or axillary lymph node dissection, adjuvant medical treatment and radiotherapy to the whole breast. Pathological and clinical data suggest that about 90% of the recurrences of cancer in the ipsilateral breast are in the vicinity of the index lesion and that remote recurrences are uncommon – whether or not whole-breast radiotherapy is delivered.

The proportion of patients who have recurrence in a portion of the breast that would not be covered by partial-breast irradiation is the same as that for patients given whole-breast irradiation. Thus, the necessity of whole-breast radiotherapy has been questioned, and the idea of partial-breast irradiation became a reasonable alternative. Moreover, whole-breast radiotherapy is usually delivered daily over 5–7 weeks. The logistic barriers to this treatment, especially time and travel, lead to a situation where only 30–50% of patients who are candidates for breast conservation treatment actually receive it [1,3-5].

The first accelerated partial-breast irradiation technique that was developed, and is associated with the most mature data, is that of multicatheter interstitial brachytherapy. This method was first implemented several decades ago; it was performed at the time of lumpectomy and was used to boost whole-breast irradiation. The technique and its indications have progressed substantially, and thus accelerated APBI can be used as the main treatment after lumpectomy [4].

The concept of PBI is still under investigation since long-term results are not yet available. There are various methods of PBI. Intraoperative radiotherapy is the delivery of a single high dose of irradiation directly to the tumor bed during surgery immediately following surgical resection of the tumor.

THE TECHNIQUE

Older IORT devices were technically cumbersome or required custom-built operating rooms. Some institutions performed IORT by transporting the patient from the operating room to the radiotherapy unit during surgery. These limitations have hampered the widespread adoption of IORT. The technology of miniaturization that has permeated the modern world has enabled the development of mobile IORT devices.

IORT can be delivered using a mobile linear accelerator or using a mini-electron beam low energy X-ray source. The method for using a linear accelerator involves resection of the primary tumor plus a 1 cm margin of normal tissue based on intraoperative evaluation, placement of an aluminum-lead disk just above the pectoralis muscle to minimize thoracic radiation exposure, complete retraction of the skin away from the radiation applicator, mobilization of the deep aspect of the breast above the pectoralis muscle for 5–10 cm around the tumor bed, and delivery of IORT using a mobile dedicated linear accelerator device. The total dose of 21 Gy is approximately biologically equivalent to 60 Gy given over 5 weeks.

With the advent of low energy X-rays, IORT can now be delivered utilizing a mini-electron beam-driven X-ray source called Intrabeam\textregistered (Zeiss, Germany). Low energy X-rays (50 kV maximum) are emitted from the tip of a 10 cm x 3.2 mm diameter probe that is enclosed in a spherical applicator that in turn is inserted into the tumor bed, as depicted in Figure 1.

APBI = accelerated partial-breast irradiation

PBI = partial-breast irradiation

IORT = intraoperative radiotherapy
IORT is delivered for about 30–50 minutes. The prescribed doses at 1 cm and 0.2 cm are 6 Gy and 20 Gy, respectively. The dose rate depends on the diameter of the applicator and the energy of the beam, both of which may be varied to optimize the radiation treatment. During the procedure, tissue is kept at a distance from the source by spherical applicators to give a more uniform dose. Tungsten-impregnated rubber sheets are placed on the chest wall to protect the heart and lungs and over the wound to block stray radiation. The quick attenuation of the radiation minimizes the need for radiation protection for the operating personnel. The operating team usually leaves the room during the irradiation, but the radiation team and anyone else interested in observing the procedure sit behind a mobile lead shield to prevent exposure [6-10].

PATIENT SELECTION

Previous pathological findings and the results of prospective clinical studies have demonstrated the importance of identifying a low risk subset of breast cancer patients, for whom tumor bed radiotherapy might be sufficient treatment after breast-conserving surgery. According to these findings, there are several populations that are not good candidates for IORT, such as patients with invasive lobular carcinomas due to the multifocality and diffuse spread of this lesion, patients with EIC (extensive intraductal component), patients with ductal carcinoma in situ since a large proportion of these tumors are widely spread in the breast, patients with involved margins of resection, and patients with clinically involved lymph nodes [11-13].

In 2009, The American Society for Radiation Oncology (ASTRO) convened a task force of experts in the field of breast cancer to develop a consensus statement regarding patient selection criteria and best practices for the use of PBI, outside the context of a clinical trial. According to the consensus statement, all patients considered for PBI should be candidates for breast-conserving therapy (no prior radiotherapy, no history of certain collagen vascular diseases, and not pregnant), and they should be committed to long-term follow-up for evaluation of recurrence, second primary cancers, and treatment toxicity. Tables 1 and 2 present the task force’s consensus regarding “suitable” and “unsuitable” groups for whom treatment with PBI is considered acceptable and not acceptable outside of a clinical trial, respectively [14-16]:

TRIALS

Many studies have discussed the option of accelerated partial breast irradiation after lumpectomy, but there are only a few...
published trials about IORT specifically [17,18]. One of the most important IORT trials to date is the TARGIT trial conducted by Vaidya et al. [7], which uses the technique of single-dose targeted IORT with Intrabeam. In this study, 1113 patients were randomly allocated to targeted intraoperative radiotherapy and 1119 were allocated to external beam radiotherapy. At 4 years, there were six local recurrences in the intraoperative radiotherapy group and five in the external beam radiotherapy group. The Kaplan-Meier estimate of local recurrence in the conserved breast at 4 years was 1.20% (95% confidence interval 0.53–2.71) in the targeted IORT and 0.95% (0.39–3.21) in the external beam radiotherapy group (difference between groups 0.25%, -1.04 to 1.54, \(P = 0.41 \)). The frequency of any complications and major toxicity was similar in the two groups: for major toxicity, 37 (3.3%) of 1113 targeted IORT vs. 44 (3.9%) of 1119 external beam radiotherapy, \(P = 0.44 \). Radiotherapy toxicity (Radiation Therapy Oncology Group grade 3) was lower in the targeted IORT group (6 patients, 0.5%) than in the external beam radiotherapy group (23 patients, 2.1%, \(P = 0.002 \)). The follow-up will continue for another 5 years [19,20].

Another important IORT trial is the ELIOT trial conducted by Veronesi and co-researchers [17]. In this study, 590 patients affected by unifocal breast carcinoma up to a diameter of 2.5 cm received whole resection of the breast followed by IORT with electrons. Ninety-seven percent of the patients in this study had IORT as the sole radiation treatment modality. After a follow-up from 4 to 57 months (mean 24 months, median 20), 19 patients (3.2%) developed breast fibrosis – mild in 18, severe in 1 – which resolved within 24 months. Local recurrences developed in three patients (0.5%), ipsilateral carcinomas in other quadrants in three patients and contralateral breast carcinoma in five. One patient (0.2%) died of distant metastases [21].

DISCUSSION

Compared to postoperative external beam radiotherapy, IORT has several advantages: shorter treatment duration, which improves patient convenience; normal tissue sparing; fewer adverse effects on the lungs, heart, and contralateral breast through marked dose attenuation; less chance of seeding of tumor cells; reduced skin damage leading to a satisfactory breast reconstruction and better cosmetic outcomes; and virtually no delay between surgery and the irradiation of any residual cancer cells. In addition, IORT enables a woman to have breast-conserving therapy in the future – if a new tumor appears in another area of the breast. These advantages could result in more women being offered, and subscribing to, breast-conserving treatment [1,6,22].

The results of the trials mentioned here are very good regarding the safety and effectiveness of single-dose targeted IORT. If the final results of the ongoing IORT trials are consistent with the current findings, IORT should be considered as a preferable alternative for whole-breast irradiation in a selected low risk breast cancer population. We have begun practicing IORT in our institution as a substitute for whole-breast irradiation in selected patients. So far the outcome is promising.

Corresponding author:
Dr. R. Kessner
3 Kadima Street, Haifa 34382, Israel
Phone: (972-4) 837-5732
Fax: (972-4) 837-5732
email: rikikes@gmail.com

References

Structure and dynamics of the M3 muscarinic acetylcholine receptor

Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1–M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. Kruse et al. describe the structure of the G11/11-coupled M3 mAChR (‘M3 receptor’, from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G11/11-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. These findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

Nature 2012; 482: 552
Eitan Israeli

Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain

All attempts at treating strokes by pharmacologically reducing the human brain’s vulnerability to ischemia have failed, leaving stroke as a leading cause of death, disability and massive socioeconomic loss worldwide. Over decades, research has failed to translate over 1000 experimental treatments from discovery in cells and rodents to use in humans, a scientific crisis that gave rise to the prevailing belief that pharmacological neuroprotection is not feasible or practicable in higher-order brains. To provide a strategy for advancing stroke therapy, Cook et al. used higher-order gyrencephalic non-human primates, which bear genetic, anatomic and behavioral similarities to humans and tested neuroprotection by PSD-95 inhibitors – promising compounds that uncouple postsynaptic density protein PSD-95 from neurotoxic signaling pathways. The authors show that stroke damage can be prevented in non-human primates in which a PSD-95 inhibitor is administered after stroke onset in clinically relevant situations. This treatment reduced infarct volumes as gauged by magnetic resonance imaging and histology, preserved the capacity of ischemic cells to maintain gene transcription in genome-wide screens of ischemic brain tissue, and significantly preserved neurological function in neurobehavioral assays. The degree of tissue neuroprotection by magnetic resonance imaging corresponded strongly to the preservation of neurological function, supporting the intuitive but unproven dictum that integrity of brain tissue can reflect functional outcome. These findings establish that tissue neuroprotection and improved functional outcome after stroke is unequivocally achievable in gyrencephalic non-human primates treated with PSD-95 inhibitors.

Nature 2012; 483: 213
Eitan Israeli

“Hate is a dead thing. Who of you would be a tomb?”