Isolated Contact Urticaria Caused by Immunoglobulin E-Mediated Fish Allergy

Roberta Onesimo MD, Valentina Giorgio MD, Stefania Pili MD, Serena Monaco MD and Stefano Miceli Sopo MD

Department of Pediatrics, Policlinico A. Gemelli, Catholic University, Rome, Italy

ABSTRACT: Fish is a common cause of food allergy. The reactions usually occur after its ingestion. In most immunoglobulin E-mediated reactions, the allergens are gastroresistant and heat-stable proteins of low molecular weight (parvalbumin). On the other hand, isolated contact urticaria following the handling of raw fish but without symptoms after its ingestion was found among cooks and professional fish handlers. In these cases, the fish allergens are gastrosensitive and thermolabile, as demonstrated by the decrease in the diameter of the wheal in the skin-prick test using cooked fish. To the best of our knowledge isolated fish contact urticaria in children has not been previously reported. We analyze the features of three pediatric cases of contact urticaria from cod (one of them was sensitized to parvalbumin), with tolerance after ingestion of this fish on oral food challenge.

KEY WORDS: child, contact urticaria, fish allergy, parvalbumin

ABSTRACT:

Fish is a common cause of food allergy. The reactions usually occur after its ingestion. In most immunoglobulin E-mediated reactions, the allergens are gastroresistant and heat-stable proteins of low molecular weight (parvalbumin). On the other hand, isolated contact urticaria following the handling of raw fish but without symptoms after its ingestion was found among cooks and professional fish handlers. In these cases, the fish allergens are gastrosensitive and thermolabile, as demonstrated by the decrease in the diameter of the wheal in the skin-prick test using cooked fish. To the best of our knowledge isolated fish contact urticaria in children has not been previously reported. We analyze the features of three pediatric cases of contact urticaria from cod (one of them was sensitized to parvalbumin), with tolerance after ingestion of this fish on oral food challenge.

KEY WORDS: child, contact urticaria, fish allergy, parvalbumin

PATIENT DESCRIPTIONS

PATIENT 1

N.A., a 5 year old boy, was admitted to our pediatric clinic with a history of allergic rhinitis, atopic dermatitis and fish allergy. At age 2 years he ate grouper and 30 minutes later presented with urticaria localized on the skin affected by atopic dermatitis. Skin-prick tests were positive for cooked grouper (4.5 mm) but negative (2 mm) for cod extract. When he was 5 years old, he presented with urticaria after his elbow came into contact with grouper.

SPTs for raw and cooked mussels, raw shrimp and cod extract (Lofarma®, Milan, Italy) were negative. SPTs for raw and cooked grouper, raw and cooked sea bream, raw and cooked cod, cooked shrimp, raw and cooked tuna, and raw and cooked cuttlefish were positive (9, 6, 6, 4, 5, 4, 5, 3, 5, 4 mm, respectively). The investigation of serum-specific IgE for fish was performed with ImmunoCAP assay (Phadia, Sweden) and the results were as follows: cod 1.63 kUA/L, sole 1.07 kUA/L, anisakis 0 kUA/L, hake 1.12 kUA/L, swordfish 0.07 kUA/L, plaice 1.20 kUA/L, yellow diamond 0.93 kUA/L, salmon 1.26 kUA/L, European sardine 1.03 kUA/L, mackerel 0.8 kUA/L, tuna 0.44 kUA/L, trout 1.72 kUA/L, shrimp 0.04 kUA/L, sepia 0 kUA/L, c rGad 1 parvalbumin 0.97 kUA/L.

The open OFC with cooked grouper was positive (generalized urticaria and itching of the lips and pharynx). We reached the diagnosis of IgE-mediated allergy to grouper and recommended that he not be fed this fish. The open OFC and the Rub tests with cooked tuna were negative. The family was advised to introduce tuna into the diet.

SPT= skin-prick test
IgE = immunoglobulin E
kUA/L = kilounits of antibody per liter
OFC = oral food challenge

PATIENT 2

Patient 2 was a 3 year old boy who presented with urticaria after coming into contact with mussels. Skin-prick tests were positive for cooked mussels (4 mm) but negative (2 mm) for cod extract. The investigation of serum-specific IgE for fish was performed with ImmunoCAP assay (Phadia, Sweden) and the results were as follows: cod 1.63 kUA/L, sole 1.07 kUA/L, anisakis 0 kUA/L, hake 1.12 kUA/L, swordfish 0.07 kUA/L, plaice 1.20 kUA/L, yellow diamond 0.93 kUA/L, salmon 1.26 kUA/L, European sardine 1.03 kUA/L, mackerel 0.8 kUA/L, tuna 0.44 kUA/L, trout 1.72 kUA/L, shrimp 0.04 kUA/L, sepia 0 kUA/L, c rGad 1 parvalbumin 0.97 kUA/L.

The open OFC with cooked mussels was positive (generalized urticaria and itching of the lips and pharynx). We reached the diagnosis of IgE-mediated allergy to mussels and recommended that he not be fed this fish. The open OFC and the Rub tests with cooked tuna were negative. The family was advised to introduce tuna into the diet.

PATIENT 3

Patient 3 was a 4 year old boy who presented with urticaria after coming into contact with raw shrimps. Skin-prick tests were positive for cooked mussels (4 mm) but negative (2 mm) for cod extract. The investigation of serum-specific IgE for fish was performed with ImmunoCAP assay (Phadia, Sweden) and the results were as follows: cod 1.63 kUA/L, sole 1.07 kUA/L, anisakis 0 kUA/L, hake 1.12 kUA/L, swordfish 0.07 kUA/L, plaice 1.20 kUA/L, yellow diamond 0.93 kUA/L, salmon 1.26 kUA/L, European sardine 1.03 kUA/L, mackerel 0.8 kUA/L, tuna 0.44 kUA/L, trout 1.72 kUA/L, shrimp 0.04 kUA/L, sepia 0 kUA/L, c rGad 1 parvalbumin 0.97 kUA/L.

The open OFC with cooked mussels was positive (generalized urticaria and itching of the lips and pharynx). We reached the diagnosis of IgE-mediated allergy to mussels and recommended that he not be fed this fish. The open OFC and the Rub tests with cooked tuna were negative. The family was advised to introduce tuna into the diet.

PATIENT DESCRIPTIONS

PATIENT 1

N.A., a 5 year old boy, was admitted to our pediatric clinic with a history of allergic rhinitis, atopic dermatitis and fish allergy. At age 2 years he ate grouper and 30 minutes later presented with urticaria localized on the skin affected by atopic dermatitis. Skin-prick tests were positive for cooked grouper (4.5 mm) but negative (2 mm) for cod extract. When he was 5 years old, he presented with urticaria after his elbow came into contact with grouper.

SPTs for raw and cooked mussels, raw shrimp and cod extract (Lofarma®, Milan, Italy) were negative. SPTs for raw and cooked grouper, raw and cooked sea bream, raw and cooked cod, cooked shrimp, raw and cooked tuna, and raw and cooked cuttlefish were positive (9, 6, 6, 4, 5, 4, 5, 3, 5, 4 mm, respectively). The investigation of serum-specific IgE for fish was performed with ImmunoCAP assay (Phadia, Sweden) and the results were as follows: cod 1.63 kUA/L, sole 1.07 kUA/L, anisakis 0 kUA/L, hake 1.12 kUA/L, swordfish 0.07 kUA/L, plaice 1.20 kUA/L, yellow diamond 0.93 kUA/L, salmon 1.26 kUA/L, European sardine 1.03 kUA/L, mackerel 0.8 kUA/L, tuna 0.44 kUA/L, trout 1.72 kUA/L, shrimp 0.04 kUA/L, sepia 0 kUA/L, c rGad 1 parvalbumin 0.97 kUA/L.

The open OFC with cooked grouper was positive (generalized urticaria and itching of the lips and pharynx). We reached the diagnosis of IgE-mediated allergy to grouper and recommended that he not be fed this fish. The open OFC and the Rub tests with cooked tuna were negative. The family was advised to introduce tuna into the diet.

The open OFC with cooked cod was negative and the Rub test was positive. We reached the diagnosis of IgE-mediated allergy to cod, with contact urticaria as the only manifestation. The child was permitted to eat cod. His parents declined to test his tolerance to other fish. At home he ate cod only twice and canned tuna many times with no adverse reaction. His parents did not feed him any other type of fish for fear of an allergic reaction.

SPT= skin-prick test
IgE = immunoglobulin E
kUA/L = kilounits of antibody per liter
OFC = oral food challenge
ORIGINAL ARTICLES

PATIENT 2

When we knew A.C. he was 7 years old and did not eat fish, crustaceans or mollusks. In his first 2 years of life he presented atopic dermatitis and when he was 2.5 years old he touched cooked cod with his hands and then touched his face; within a few minutes he developed urticaria and angioedema of the face and lips. The test for serum specific IgE for cod was positive (9.45 kU/L), as were SPTs for bluefish and white fish. The child had never eaten fish before and did not eat it again. During the next 4 years, every time he touched fish he developed contact urticaria; i.e., his mother said that hives appeared on his cheek where he had been kissed by his brother who had just eaten fish. For this reason he avoided the ingestion of fish until he was 7 years old.

We performed SPTs with natural foods and they were positive for canned (4 mm), raw (5 mm) and cooked tuna (5 mm), raw (10 mm) and cooked cod (6 mm), raw squid (4 mm), and negative for raw and cooked clam, cooked squid, raw and cooked mussel and raw and cooked shrimp. The open OFC with cooked cod was negative, while the Rub test on his cheeks with this food was positive (contact urticaria and hives appeared not only where the Rub test was performed but also on distal sites, for example the trunk and limbs). IgE-mediated allergy to fish was diagnosed, with contact urticaria as the only clinical manifestation, and he was therefore allowed to eat cod. The ingestion at home of clam, mussel, squid and shrimp has been allowed without performing OFC.

The boy did not particularly like eating fish but he did eat it occasionally in the subsequent 7 years (i.e., until his last telephonic follow-up) without any sign of adverse reaction.

PATIENT 3

N.C., a 2 year old child who suffered from atopic dermatitis, came to our clinic because of perioral urticaria supposedly due to the ingestion of cooked cod. The specific serum IgE for cod (ImmunoCAP, Phadia, Sweden) was slightly positive (0.75 kU/L). The child had a history of other food allergies (eggs and nuts). The SPT with cooked cod was positive (mean diameter of wheels 7 mm); the open OFC resulted in only a small urticaria wheal on his left cheek and a light circumoral erythema, where fish had accidentally touched his skin.

We presumed that the modest clinical reaction was due to skin contact and not food ingestion. Therefore, based on the skin-prick test and oral food challenge results, the child was allowed to ingest cooked cod. To further confirm our hypothesis, the successive ingestions of cod at home have not been associated with adverse events.

DISCUSSION

Fish is the third most frequent food allergen after cow’s milk and egg in Europe [1]. Contact urticaria constitutes a common reaction in patients with systemic fish allergy, even in the pediatric age [4]. Contact urticaria from IgE-mediated fish allergy may also occur in isolated form, despite oral tolerance to fish ingestion; it has been described in food handlers and chefs [2] but was not previously described in the pediatric population. The three cases presented here demonstrate that IgE-mediated fish allergy contact urticaria can occur even in children.

There are other points of interest: namely, all children had atopic dermatitis and this could have caused a first “unusual” contact with the allergen. We say “unusual” because it has been theorized that food allergens that enter the body through the airways and skin (and not through the gastrointestinal route) could result in sensitization [5,6]. Skin injuries from atopic dermatitis could be compared to the macerated skin of the hands of professional fish handlers. However, these are the only similarities between our cases and occupational contact urticaria:

- the three children were not exposed to continuous contact with the allergen
- urticaria spread to sites usually not affected by contact (i.e., the hands), and in at least one case (A.C.) it went beyond the contact site
- the food caused contact urticaria also when cooked; therefore, the offending allergen is heat-resistant, even if gastrosensitive.

Unfortunately, the patients A.C and N.C were observed several years ago and at that time we could not measure the specific IgE for parvalbumin or perform molecular analysis. Gad c 1 was positive in case 1, where the SPTs with commercial extracts of cod and OFC were negative, but the Rub test and SPTs with natural food (cod) were positive. The prick-by-prick test with natural food showed a greater sensitivity than the commercial extract, as already documented with vegetables and milk [7,8]. Nonetheless, it was surprising that the positivity of Gad c 1 and the negativity of SPT with cod extracts occurred concomitantly. The company producing the cod extract used in this study assured us of the presence of parvalbumin. Previous studies [9,10] showed that parents did not introduce the food into the diet of their children even after a negative OFC. This is confirmed by our experience.

CONCLUSIONS

According to our experience, isolated contact urticaria caused by IgE-mediated fish allergy exists even in the pediatric age with characteristics different from those seen in adults. It is a rare manifestation: during a period of 10 years we observed only three cases, and an informal survey with the Italian Association of Pediatric Allergists (APAL, www.apalweb.it) did not reveal other such cases up to April 2011.

In the three cases described we reached the diagnosis of IgE-mediated allergy to cod but dietary restriction was not pre-
scribed to the patients because the contact urticaria was the only clinical sign at OFC. However, it is our opinion that pediatric cases of suspected IgE-mediated allergy to fish with a history of contact urticaria should undergo the OFC in order to verify the presence or absence of symptoms after ingestion of the trigger food and that excessive dietary restrictions should be avoided.

References

Distinct stem cells contribute to mammary gland development and maintenance

The mammary epithelium is composed of several cell lineages including luminal, alveolar and myoepithelial cells. Transplantation studies have suggested that the mammary epithelium is maintained by the presence of multipotent mammary stem cells. To define the cellular hierarchy of the mammary gland during physiological conditions, Van Keymeulen et al. performed genetic lineage-tracing experiments and clonal analysis of the mouse mammary gland during development, adulthood and pregnancy. The authors found that in postnatal unperturbed mammary gland, both luminal and myoepithelial lineages contain long-lived unipotent stem cells that display extensive renewing capacities, as demonstrated by their ability to clonally expand during morphogenesis and adult life as well as undergo massive expansion during several cycles of pregnancy. The demonstration that the mammary gland contains different types of long-lived stem cells has profound implications for our understanding of mammary gland physiology and will be instrumental in unraveling the cells at the origin of breast cancers.

Suppression of bone formation by osteoclastic expression of semaphorin 4D

Most of the currently available drugs for osteoporosis inhibit osteoclastic bone resorption; only a few drugs promote osteoblastic bone formation. It is thus becoming increasingly necessary to identify the factors that regulate bone formation. Negishi-Koga and colleagues found that osteoclasts express semaphorin 4D (Sema4D), previously shown to be an axon guidance molecule, which potently inhibits bone formation. The binding of Sema4D to its receptor Plexin-B1 on osteoblasts resulted in the activation of the small GTPase RhoA, which inhibits bone formation by suppressing insulin-like growth factor-1 (IGF-1) signaling and by modulating osteoblast motility. Sema4D-/- mice, PlxnB1-/- mice and mice expressing a dominant-negative RhoA specifically in osteoblasts showed an osteosclerotic phenotype due to augmented bone formation. Notably, Sema4D-specific antibody treatment markedly prevented bone loss in a model of postmenopausal osteoporosis. Thus, Sema4D has emerged as a new therapeutic target for the discovery and development of bone-increasing drugs.

“Who will watch the watchman?”

Decimus Junius Juvenal (2nd century AD), Roman poet