Recurrent Urinary Tract Infection: Time to Recommend Weight Loss?

Amir Mari MD1 and Fadi Abu Baker MD2

1Department of Gastroenterology and Hepatology, Nazareth Hospital EMMS, Nazareth, affiliated with Bar-Ilan University, Safed, Israel
2Department Gastroenterology and Hepatology, Hillel Yaffe Medical Center, Hadera, Israel

\textbf{KEY WORDS:} non-alcoholic fatty liver disease (NAFLD), recurrent urinary tract infections (rUTIs)

We have read with great interest the article in this issue of the Israel Medical Association Journal (IMAJ) by Neir and colleagues [1]. They observed an association between non-alcoholic fatty liver disease (NAFLD) and recurrent urinary tract infections (rUTIs). NAFLD is a chronic liver disease caused by hepatic fat accumulation in the absence of excessive alcohol consumption. NAFLD represents a spectrum of chronic liver diseases that range from simple steatosis to nonalcoholic steatohepatitis and cirrhosis [2]. Like the increasing prevalence of obesity and metabolic syndrome globally, NAFLD is considered among the most common chronic liver diseases worldwide and has become one of the leading indications for liver transplantation in adults [3].

AWARENESS OF NAFLD AS A MULTISYSTEMIC DISEASE HAS INCREASED AND IT IS REPLACING VIRAL HEPATITIS AS THE MAINSTANCE OF CLINICAL HEPATOLOGY, ESPECIALLY WITH THE ADVANCEMENT IN TREATMENT FOR HEPATIA C VIRUS USING DIRECT-ACTING ANTI-VIRAL DRUGS. IN ADDITION, NAFLD IS NOW WIDELY ENCOUNTERED BY VARIOUS PRACTITIONERS IN DIFFERENT SETTINGS.

The pathogenesis and development of NAFLD is a complex and multifactorial process [4]. Insulin resistance from excessive accumulation of free fatty acids is thought to be a primary factor in the development of steatosis in most patients with NAFLD. Other factors may include increased secretion of specific pro-inflammatory cytokines, mitochondrial dysfunction, oxidative stress, disorders in the metabolism of adipose tissue, microbiota alterations, and genetic factors [5].

A large body of literature currently exists to suggest that the clinical burden of NAFLD is part of a multisystem disease and not merely confined to the liver. In addition to the well-known association with metabolic syndrome, it has been clearly demonstrated that NAFLD is independently associated with an increased risk of cardiovascular disease, chronic kidney disease, type 2 diabetes, and possibly malignancies [6]. Moreover, in a recent literature search, we found a wide spectrum of clinical conditions associated with NAFLD, and more studies are being conducted to confirm these findings.

CONCLUSIONS

This is not the first time that NAFLD was reported to be associated with bacterial infections. NAFLD was associated with an increased risk of recurrent bacterial infections irrespective of metabolic syndrome in one study [13]. NAFLD was also associated with 30-day all-cause mortality in patients with community-acquired pneumonia in a recent report [14].

The evidence has shown that elevated body mass index appears to be associated with an increased risk for urinary tract infections and pyelonephritis [8]. Moreover, significantly increased risk of urolithiasis among patients with NAFLD was observed in a recent meta-analysis [9], a possible risk for increased recurrent urinary infection risk. Notably, emerging evidence suggests that altered immunity and low vitamin D concentrations are common among NAFLD patients [10–12]. Still, more investigations are needed to explain pathogenic pathways and mechanisms involved in acquiring rUTIs in NAFLD.

Correspondence

Dr. A. Mari
Dept. of Gastroenterology and Hepatology, Nazareth Hospital EMMS, Nazareth 65000, Israel.
email: amir.mari@hotmail.com
References

Capsule

Artificial memories
Activity patterns in distinct neural circuits eventually form coded memories during learning. In theory, replicating the same neural activity could recreate these memories without requiring the real-life learning experience. Vetere and co-authors showed how artificial memories can be created by stimulating brain regions. In optogenetics, light can be used to silence or activate proteins labeled with light-sensitive rhodopsins. With this technology, the authors identified the neural pathways that are involved in the formation of “real” memories during an odor conditioning task. Mice will memorize a preference or aversion toward specific odors. In these experiments, animals that were conditioned through experience showed the same responses as animals that had an optogenetically implanted memory. The expression of both real and artificial memories depended on activity in a brain region called the basolateral amygdala.

Nat Neurosci 2019; 10. 1036/s41593-019-0389-0
Eitan Israeli

Capsule

Galectin-3 in Alzheimer’s disease
The role of the innate immune system and inflammation in Alzheimer’s disease is currently undergoing scrutiny. Galectin-3 has been identified as a protein that is highly up-regulated in brain microglia during neurodegeneration and aging. Boza-Serrano and colleagues analyzed the potential role of galectin-3 in Alzheimer’s disease pathology. They found that galectin-3 was highly up-regulated in brains from Alzheimer’s disease patients, particularly in microglia associated with amyloid plaques. A similar distribution was seen in mouse models of Alzheimer’s disease. Polymorphisms in the gene encoding galectin-3 were associated with increased risk of Alzheimer’s disease. In mouse models, reducing galectin-3 expression ameliorated plaque burden and improved cognitive behaviors. Furthermore, direct injections of galectin-3 and amyloid into wild-type mice induced amyloid aggregation in the hippocampus. Further work will be needed to confirm whether inhibiting galectin-3 could provide an approach to Alzheimer’s disease treatment or prevention.

Eitan Israeli

“Remember that fear always lurks behind perfectionism. Confronting your fears and allowing yourself the right to be human can, paradoxically, make you a far happier and more productive person”

David D. Burns (born 1942), American author and adjunct professor emeritus in the Department of Psychiatry and Behavioral Sciences at the Stanford University School of Medicine