Autoimmune Tautology in a Complex Case of Poly-Autoimmunity: Systemic Sclerosis, Autoimmune Liver Involvement, Antiphospholipid Syndrome and Hashimoto’s Thyroiditis

Francesca W. Rossi MD PhD1, Antonio Lobasso MD1, Carmine Selleri MD PhD2, Marco Matucci-Cerinic MD PhD3, Felice Rivellese MD PhD1,4, Yehuda Shoenfeld MD FRCP MaACR5 and Amato de Paulis MD PhD1

1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico, Naples, Italy
2Hematology Branch, Department of Medicine, University of Salerno, Salerno, Italy
3Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
4Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
5Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel

KEY WORDS: autoimmunity, systemic sclerosis (SSc), liver, Raynaud’s phenomenon, Hashimoto’s thyroiditis

For Editorial see page 186

Systemic sclerosis (SSc) is a chronic multisystem disorder characterized by autoantibody production, inflammation, microvascular abnormalities and connective tissue fibrosis [1]. The skin involvement may be minimal or absent in some cases. In a very small percentage of SSc patients it is possible to detect antiphospholipid antibodies (APA) that are more often found in other autoimmune diseases (ADs), such as rheumatoid arthritis, Sjögren’s syndrome and autoimmune hepatitis (AIH).

Antiphospholipid antibody syndrome (APS) is defined by the persistent presence of APA in individuals with recurrent venous or arterial thromboembolism or pregnancy morbidity [2]. The coexistence of SSc/APS is therefore a rare overlapping syndrome. When these two conditions are associated, more severe manifestations can be observed, such as pulmonary hypertension and gangrene of the extremities [2].

AIH is an autoimmune disease characterized by chronic liver inflammation of unknown cause. Its diagnostic criteria are in accordance with the International Autoimmune Hepatitis Group and the simplified criteria are based on the elevation of immunoglobulin G (IgG), the demonstration of characteristic autoantibodies, and histological evidence of interface hepatitis in the absence of viral disease [3]. Although AIH can be characterized by the simultaneous occurrence of other ADs, the co-occurrence of AIH and SSc remains to be defined. In fact, gastrointestinal involvement has been reported in as many as 90% of patients with SSc, yet the frequency of liver involvement remains low and there have been only sporadic reports of SSc with AIH. Another feature of SSc is the overlap with thyroid disorders. Discordant results on the association between thyroid autoimmunity and SSc have been reported; yet a high incidence of thyroid dysfunction has been shown [4].

Interestingly, to the best of our knowledge the co-occurrence of SSc, AIH, APS and Hashimoto’s thyroiditis in a single patient has never been described. We present such a case here.

PATIENT DESCRIPTION

Our patient was a 34 year old male, non-smoker, with a history of recurrent deep venous thrombosis and dysphagia to both solids and liquids. He had a previous diagnosis (in 2010) of primary Raynaud’s phenomenon for which he was treated with acetylsalicylic acid and nifedipine. In June 2014, he came to our attention complaining of arthralgia, asthenia, dyspepsia, dysphagia and worsening of Raynaud’s phenomenon.

The laboratory investigation showed positive antinuclear antibodies (ANA) at high titer (640 UA/ml), anti-centromere antibodies (640 UA/ml) and anti-b2-glycoprotein I antibodies (25.4 U/ml), as well as erythrocyte sedimentation rate (ESR) (28 mm/ hr) and a slightly reduced complement (C3 0.79 g/L, C4 0.13 g/L). Other autoantibodies (anti-Jo-1, anti-Sm, anti-SSb, anti-SSa, anti-Scl70, antiantiphospholipid antibodies and lupus anticoagulant) were negative. Nailfold capillaroscopy showed a scleroderma pattern. Esophagogastroduodenoscopy demonstrated a lower esophageal sphincter dysfunction with grade 2 esophagitis, and high resolution esophagus manometry detected a marked reduction of peristaltic pressures in the distal two-thirds of the esophagus. There was no evidence of pulmonary involvement on high resolution computed tomography (HRCT) and pulmonary function tests were normal. The echocardiogram systolic pulmonary pressure (sPAP) was 20 mmHg. No evidence of skin thickening was observed but facial telangiectasia was present. According to the 2013 American College...
of Rheumatology/European League against Rheumatism (ACR/EULAR) criteria, the patient was classified as SSc (score 10).

At follow-up, elevated liver function tests – aspartate aminotransferase (AST) 180 U/L and alanine aminotransferase (ALT) 150 U/L – were detected. No cholestasis was present, and serological tests for infectious diseases (including human immunodeficiency virus, hepatitis B and C, toxoplasmosis and cytomegalovirus) were all negative. Nevertheless, the positive ANA and the increased serum IgG (32 g/L) led us to suspect that an autoimmune hepatitis was developing. In order to confirm this diagnosis and evaluate the severity of liver damage, a liver biopsy was performed. Histology showed typical features of interface hepatitis with portal and periportal cellular inflammation characterized by an infiltrate of lymphocytes, monocytes/macrophages and plasma cells. The biliary system was spared. Within 4 weeks, treatment with prednisone (0.5 mg/kg/day) and azathioprine (100 mg/day) led to the rapid normalization of liver function tests.

The persistence of anti-b2-glycoprotein I antibodies after 12 weeks, and the recurrent deep vein thrombosis, led to the diagnosis of APS, according to the international consensus statement on APS [2]. Anti-thrombotic treatment (warfarin) was started. The follow-up at 24 months did not reveal any significant change in lung function or additional complications, such as any change in chest HRCT and pulmonary function tests. Treatment with proton pump inhibitors (PPIs) was beneficial for Helicobacter pylori infection.

In conclusion, overlap syndromes comprise multiple individual ADs. Several individual cases of overlap have been reported in patients simultaneously suffering from up to three organ-specific ADs. While many studies in the previous decades were designed to investigate different multiple associations of autoimmune diseases, multicentric collaborations are needed to obtain definite results of the incidence of poly-autoimmunity [4]. Finally, better understanding of the complex gene-environment interactions involved in the development of ADs, together with the best of our knowledge the co-occurrence of SSc, AIH, APS and Hashimoto’s thyroiditis has never been described.

We report for the first time a case of SSc/APA overlap: rapidly developing features of AIH and Hashimoto’s thyroiditis. Both genetic and epidemiologic studies have suggested that SSc shares a genetic background with other ADs and our case confirms the concept of the “mosaic of autoimmunity.” It is clear that autoimmunity plays a pivotal role in the pathogenesis of SSc. However, the complex mechanism involved in the development of multiple ADs in one individual and the effect of poly-autoimmunity on the final clinical autoimmune phenotype are not well understood. Genes and environmental factors for many traits are connected in a close interaction that is genetically programmed or is purely stochastic. Recent evidence demonstrates that environment, more than genetics, shapes the immune system, conferring a higher risk of ADs developing. The study of interactions among individuals and the environment leading to ADs has been defined as autoimmune ecology (AE) [5]. AE is therefore a crucial component of the autoimmune tautology and reinforces the theory that ADs share several common mechanisms.

In our case, the patient shared signs and symptoms of different ADs and it is remarkable that none were of significant severity. In fact, patients with poly-autoimmunity frequently present milder clinical syndromes that can be controlled with medium-low intensity treatment, as in our case.

Figure 1. Laboratory features and onset of clinical manifestations

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Value</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>180 U/L</td>
<td>< 40 U/L</td>
</tr>
<tr>
<td>ALT</td>
<td>150 U/L</td>
<td>< 40 U/L</td>
</tr>
<tr>
<td>GGT</td>
<td>95 U/L</td>
<td>8-61 U/L</td>
</tr>
<tr>
<td>IgG</td>
<td>32 g/L</td>
<td>7.37-16.07 g/L</td>
</tr>
<tr>
<td>ANA</td>
<td>1:640 (centromeric pattern)</td>
<td>1:80</td>
</tr>
<tr>
<td>ACA</td>
<td>640 IU/ml</td>
<td>< 5 IU/ml</td>
</tr>
<tr>
<td>Anti-b2-GP1 IgM</td>
<td>25.4 IU/ml</td>
<td>< 18 IU/ml</td>
</tr>
<tr>
<td>Anti-thyroglobulin antibodies</td>
<td>434 IU/ml</td>
<td>0-115 IU/ml</td>
</tr>
</tbody>
</table>

COMMENT

The evidence that ADs share several clinical signs and symptoms, physiopathological mechanisms, and genetic factors has been described as autoimmune tautology [4]. Although many cases of association between autoimmune diseases have been reported, to

<table>
<thead>
<tr>
<th>Years</th>
<th>Diagnosis</th>
<th>Investigation</th>
<th>Value</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 2014</td>
<td>Laboratory features and onset of clinical manifestations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AST = aspartate aminotransferase, ALT = alanine aminotransferase, GGT = gamma-glutamyl transferase, ANA = antinuclear antibodies, ACA = anti-centromere antibodies, anti-b2-GP1 = anti-beta2-glycoprotein I antibodies.
study of epigenetics, are strongly suggested in order to personalize interventions for these severe conditions.

Correspondence

Dr. F.W. Rossi
University of Naples Federico, Italy
Phone: (39-081) 746-4513, Fax: (39-081) 746-4513
Email: francesca.wanda.rossi@unina.it

References

Capsule

Whole-genome landscape of pancreatic neuroendocrine tumors

The diagnosis of pancreatic neuroendocrine tumors (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. Scarpa et al. performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. They describe the mutational signatures they harbor, including a deficiency in G:C>T:A base excision repair due to inactivation of *MUTYH*, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger than expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes *MUTYH*, *CHEK2* and *BRCA2*. Together with mutations in *MEN1* and *VHL*, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodeling, DNA damage repair, activation of mTOR signaling (including previously undescribed *EWSR1* gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumors associated with hypoxia and HIF signaling. *Nature* 2017; 543: 65
Eitan Israeli

Capsule

Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist

The secreted Wnt signaling molecules are essential to the coordination of cell-fate decision making in multicellular organisms. In adult animals, the secreted Wnt proteins are critical for tissue regeneration and frequently contribute to cancer. Small molecules that disable the Wnt acyltransferase Porcupine (Porcn) are candidate anticancer agents in clinical testing. Moon et al. have systematically assessed the effects of the Porcn inhibitor (WNT-974) on the regeneration of several tissue types to identify potentially unwanted chemical effects that could limit the therapeutic utility of such agents. An unanticipated observation from these studies is pro-regenerative responses in heart muscle induced by systemic chemical suppression of Wnt signaling. Using in vitro cultures of several cell types found in the heart, the authors delineate the Wnt signaling apparatus supporting an anti-regenerative transcriptional program that includes a subunit of the non-fibrillar collagen VI. Similar to observations seen in animals exposed to WNT-974, deletion of the collagen VI subunit, COL6A1, has been shown to decrease aberrant remodeling and fibrosis in infarcted heart tissue. The authors demonstrated that WNT-974 can improve the recovery of heart function after left anterior descending coronary artery ligation by mitigating adverse remodeling of infarcted tissue. Injured heart tissue exposed to WNT-974 exhibits decreased scarring and reduced Col6 production. These findings support the development of Porcn inhibitors as anti-fibrotic agents that could be exploited to promote heart repair following injury. *PNAS* 2017; early edition doi: 10.1073/pnas.1621346114
Eitan Israeli

“**It is the ability to take a joke, not make one, that proves you have a sense of humor**”

Max Eastman (1863-1969), American writer, philosopher and prominent political activist. He supported socialism and liberal and radical causes. In later life, however, Eastman changed his views, becoming highly critical of socialism and communism after his experiences in the Soviet Union in the 1920s. He was influenced by the deadly rivalry between Leon Trotsky and Joseph Stalin in which Trotsky was ultimately assassinated, as well as the mass killings committed during Stalin’s Great Purge. Eastman became an advocate of free-market economics and anti-communism.