Clinical and Microbiological Outcomes of Asymptomatic Bacteriuria in Elderly Stroke Patients

Efraim Aizen MD1,2, Bela Shifrin MD1, Inna Shugaev MD1,2 and Israel Potasman MD2,3

1Flman Geriatric Rehabilitation Hospital, Haifa, Israel
2Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
3Infectious Diseases Unit, Bnai-Zion Medical Center, Haifa, Israel

ABSTRACT: Background: The optimal approach to the evaluation of asymptomatic bacteriuria in stroke patients is uncertain.

Objectives: To compare elderly patients after an acute stroke with and without asymptomatic bacteriuria for the development of symptomatic urinary tract infections (UTI).

Methods: We prospectively monitored patients over 65 years of age admitted to our rehabilitation hospital after an acute stroke, with and without asymptomatic bacteriuria, for the development of symptomatic UTIs. The prevalence of bacteriuria was determined by urine cultures obtained 2 and 4 weeks after admission. Patients with and without persistent bacteriuria were compared to identify variables associated with bacteriuria.

Results: Fifty-five patients were included in the study. The prevalence of asymptomatic bacteriuria at baseline was 20%. Of all 55 stroke patients, 13 (23.6%) developed a symptomatic UTI during the 30 day follow-up. Patients with stroke and asymptomatic bacteriuria at baseline had an increased risk of developing a symptomatic UTI (hazard ratio 2.86, 95% confidence interval 0.71–10.46, \( P = 0.051 \)). When subjects who experienced symptomatic urinary infection were included, the prevalence of bacteriuria in the study cohort declined to 45.5% by 30 days.

Conclusion: Elderly patients with stroke and asymptomatic bacteriuria have an increased risk of developing a symptomatic UTI compared to those without asymptomatic bacteriuria during a 30 day post-stroke follow-up.

KEY WORDS: asymptomatic bacteriuria, elderly, stroke, urinary tract infection (UTI)

Variables associated with an increased likelihood of UTI after stroke are female gender, older age, functional dependence before stroke, stroke severity, poor cognitive function, and catheterization [3,4]. Patients with stroke are at particularly high risk for developing UTI in the hospital, whether catheterized or not, with more than double the odds when compared with the general medical and surgical populations. Several explanations are suggested for this increased risk: immunosuppression, increased bladder dysfunction, and increased likelihood of having a bladder catheter [5–8].

Asymptomatic bacteriuria is defined as isolation of a specified quantitative count of bacteria in an appropriately collected urine specimen from an individual without symptoms or signs of urinary tract infection. The quantitative thresholds are different for voided clean-catch specimens and catheterized specimens. Asymptomatic bacteriuria in women is defined by the 2005 Infectious Diseases Society of America (IDSA) guidelines as two consecutive clean-catch voided urine specimens with isolation of the same organism in quantitative counts \( \geq 10^5 \text{ cfu/ml} \) [9]. In men, a single clean-catch voided urine specimen with isolation of a single organism in quantitative counts \( \geq 10^5 \text{ cfu/ml} \) is sufficient. In asymptomatic catheterized men or women, bacteriuria is defined as a single catheterized specimen with isolation of a single organism in quantitative counts \( \geq 10^4 \text{ cfu/ml} \) [9]. The presence of pyuria (\( \geq 10 \text{ leukocytes/mm}^3 \) of uncentrifuged urine) is not sufficient for the diagnosis of bacteriuria since 60% of urine samples from asymptomatic elderly women with pyuria have no bacteriuria [10].

Most experts agree that screening for and treatment of asymptomatic bacteriuria is appropriate only for pregnant women and for patients undergoing urologic procedures where mucosal bleeding is anticipated [9,11]. Screening for or treatment of asymptomatic bacteriuria is not indicated for the following populations: non-pregnant women, diabetic patients, the elderly, or patients with spinal cord injury or indwelling urethral catheters [12].

The optimal approach to the evaluation of asymptomatic bacteriuria in stroke patients is uncertain, and there are no data from large trials to clarify this issue. Although higher frequencies of bacteriuria were observed in older patients suffering a stroke [13], it is not known whether asymptomatic
Asymptomatic bacteriuria can lead to symptomatic UTI and/or other consequences in these patients. The natural history and outcome of the microbiology of asymptomatic bacteriuria in these patients is also an interesting issue that has not been well described. The aims of the present study were to compare stroke patients with and without asymptomatic bacteriuria for the development of symptomatic UTIs and after a 30 day follow-up period, and to assess and describe the microbiological outcomes in stroke patients with asymptomatic bacteriuria not treated with antimicrobials.

**Patients and Methods**

Data had been prospectively collected over a 6 month period at the Fliman Rehabilitation Geriatric Hospital (a 175-bed public geriatric facility affiliated with the Technion’s Rappaport Faculty of Medicine and located in Haifa, Israel). All patients over 65 years old admitted consecutively to the five geriatric rehabilitation wards with a diagnosis of acute stroke were eligible for inclusion. Exclusion criteria were known urinary tract abnormalities, symptoms of a UTI, use of antimicrobials for non-urinary infection, or the use of antimicrobial drugs in the previous 14 days.

Patients’ baseline medical histories were obtained from the hospital records using a standardized questionnaire and included age, type and time since stroke occurrence, secondary complications of the stroke, medication(s), and use of a urine-collecting system. During hospitalization, antimicrobial therapy was prescribed by a primary care practitioner after diagnosing a UTI in symptomatic patients by means of urinary diagnostic tests (urine culture or microscopic analysis). Urine specimens were collected and a clinical review was performed on admission day and 2 and 4 weeks later. Patients with asymptomatic bacteriuria were not treated during the study period.

**Laboratory Methods**

A mid-stream voided or urinary catheter urine specimen was collected and transported promptly to the laboratory. Standard microbiological methods were used, including semi-quantitative urine culture, organism identification, and susceptibility testing.

**Definitions**

- Asymptomatic bacteriuria in women was defined by a researcher (a physician) as two consecutive clean-catch voided urine specimens with isolation of the same organism in quantitative counts ≥ 10^5 cfu/ml [9]. In men it was defined by the same researcher (a physician) as a single clean-catch voided urine specimen with isolation of a single organism in quantitative counts ≥ 10^5 cfu/ml. In asymptomatic catheterized men or women, bacteriuria was defined as a single catheterized specimen with isolation of a single organism in quantitative counts ≥ 10^2 cfu/ml [9].
- Date of event was defined as the date when the first clinical evidence (signs/symptoms) of the UTI appeared, or the date the specimen was collected and used to make or confirm the diagnosis, whichever comes first.
- Urinary tract infections were defined using a combination of clinical signs and symptoms and laboratory criteria defined by the July 2013 CDC/NHSN Protocol Clarifications on Surveillance Definitions for Specific Types of Infections [14].
- Symptomatic UTI (SUTI) was defined when the patient manifested signs and symptoms such as acute dysuria, new and/or marked increase in urinary frequency, suprapubic tenderness, etc., which localize the infection to the urinary tract. These events could occur in patients without urinary devices or managed with urinary devices other than indwelling urinary catheters (suprapubic catheters, straight in-and-out catheters, and condom catheters) [14].

**Statistical Analysis**

Comparing patients with and without asymptomatic bacteriuria for the development of UTIs

Absolute and relative values between baseline and follow-up were compared between stroke patients with and without asymptomatic bacteriuria, using the Mann-Whitney test for categorical variables and the χ² test for dichotomous variables. Asymptomatic bacteriuria as a risk factor for the development of a UTI was investigated using a Cox proportional hazards analysis, in which patients were excluded when antimicrobial therapy was started for any reason, which resulted in a hazard ratio as the approximation of the relative risks. The cumulative incidence of UTI during 30 days was described using a Kaplan-Meyer life table analysis. A comparison of the number of UTIs between groups was performed using a multivariate Poisson regression model. In multivariate analyses, age category (65–74 vs. ≥ 75), gender, previous stroke, stroke location, bladder-emptying method, and functional status on admission were regarded as possible covariates for the multivariate analysis. P < 0.05 was considered statistically significant.

Assessing the microbiological outcomes of asymptomatic bacteriuria

The initial analysis included a description of infecting organisms and the proportion of subjects remaining bacteriuric at each sampling time. Outcomes at 2 and 4 weeks after admission were described as follows: persistence of the original bacterial strain, spontaneous resolution of the initial strain in the absence of antimicrobial therapy, and resolution of bacteriuria with treatment of symptomatic urinary infection. Standard statistical methods were used for significance testing and calculation of odds ratios (OR) and 95% confidence intervals (95%CI).
RESULTS

Follow-up results were available for 55 patients admitted for rehabilitation following a stroke. The descriptive characteristics of all patients are listed separately for those with and without asymptomatic bacteriuria in Table 1. Baseline characteristics of participants in each group were similar.

PREVALENCE OF BACTERIURIA AND INFECTING ORGANISMS

The infecting organisms isolated initially from patients with bacteriuria and the microbiologic outcome at 30 days are summarized in Table 3. Gram-negative bacteria were isolated from 91% of initial specimens. No specific bacteria were more common in symptomatic recurrences. By 30 days the prevalence remained high during the follow-up period and started immediately after inclusion of the patients. The hazard ratio of the bacteriuria to the control group did not change significantly: 2.86 (95% CI 0.71–10.46, P = 0.051) after adjustment for age, gender, previous stroke, stroke location, bladder-emptying method, and functional status on admission [Table 2].

DISCUSSION

We compared the development of symptomatic UTIs in stroke patients with asymptomatic bacteriuria with that in stroke
patients without, during a 30 day follow-up period. We found that stroke patients with asymptomatic bacteriuria have a greater chance of developing a symptomatic UTI than stroke patients without asymptomatic bacteriuria. To the best of our knowledge, although not large, this is the first follow-up study of stroke patients with and without asymptomatic bacteriuria where higher frequencies of UTIs were observed in older stroke patients with asymptomatic bacteriuria.

Early infections, especially pneumonia and urinary tract infections, occur in 30% of stroke patients and are associated with worse functional outcome, increased mortality, longer hospitalization, and increased costs for medical care [15]. This increased vulnerability to infection may be at least partially explained by stroke-induced immunodepression [16-18].

Evidence that the occurrence of infection after stroke is associated with poor functional outcome and mortality prompted investigators to assess the preventive use of antimicrobials in patients with acute stroke. A Cochrane meta-analysis concluded that although studies differed in populations analyzed, type of antimicrobial used and definition of infection, the overall antimicrobial prophylaxis reduced the infection rate from 36% to 22% (relative risk 0.58) [19]. However, it remains uncertain whether or not preventive antimicrobials reduce the risk of poor functional outcome after stroke. A recent study found that preventive ceftriaxone did not improve functional outcome at 3 months in adults with acute stroke [20].

An early biomarker predicting post-stroke infections could help in selecting patients for prophylactic therapy. Such biomarkers include heart rate variability (HRV) indices suggestive of a sympathovagal imbalance with parasympathetic overweight after ischemic stroke [21], increased sympathetic activity [7, 22] and, as found in a recent study, a high circulating natural killer cell count followed by a drop in all lymphocyte subsets in these patients [23]. None of these studies addressed bacteriuria as an early simple marker predicting post-stroke urinary tract infection.

Since the optimal approach to the evaluation of asymptomatic bacteriuria in stroke patients is uncertain, and as it was unknown whether asymptomatic bacteriuria leads to symptomatic UTI in these patients, our finding that stroke patients with asymptomatic bacteriuria compared to those without asymptomatic bacteriuria were at increased risk of developing a symptomatic UTI is important. This study suggests that screening for and treatment of asymptomatic bacteriuria might be appropriate following a stroke, and that bacteriuria may serve as a biomarker predicting post-stroke urinary infections and helping in the selection of patients for prophylactic therapy after a stroke.

We must recognize and consider the diagnostic challenges of asymptomatic bacteriuria and urinary infection in this population. The diagnosis of UTI in patients after a stroke is often complicated by the lack of typical symptoms and a clear history. Moreover, the presence of cognitive impairment and communication difficulties makes it even more difficult to obtain an accurate history. Some stroke patients may have UTI without localizing urinary symptoms, while other – especially older – patients may have chronic genitourinary symptoms and it is important to recognize that this might not be synonymous with infection.

The strength of our study is that we cultured the urine sample of every stroke patient admitted and of every patient immediately after he or she developed symptoms of a UTI. The most important limitation is that it was not a large study and the analysis was compromised by the small study numbers. Another limitation is that we followed our patients for only 30 days. This period of follow-up was chosen according to observations that most urinary tract infections developed in stroke patients within the first week to 1 month. Clearly, larger and longer follow-up studies are needed to definitively answer these questions.

CONCLUSIONS

Patients with a stroke and asymptomatic bacteriuria were at increased risk of developing a symptomatic UTI compared to those without asymptomatic bacteriuria.

Correspondence
Dr. E. Eizen
Filman Geriatric Rehabilitation Hospital, P.O. Box 2263, Haifa 31021, Israel
Fax: (972-4) 822-6017
email: efraim.eizen@filim.health.gov.il; eizen_ii@yahoo.com

References

Table 3. Organisms isolated from patients with stroke and untreated asymptomatic bacteriuria and the microbiologic outcome after 30 days

<table>
<thead>
<tr>
<th>Organism</th>
<th>Initial bacteriuria (n=11)</th>
<th>Asymptomatic (n=5)</th>
<th>Symptomatic (UTI) (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacteriuria (n=2)</td>
<td>Resolution (n=1)</td>
<td>Bacteriuria (n=2)</td>
</tr>
<tr>
<td>Gram-negative</td>
<td>10</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Enterobacter</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Providencia</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiela proteus</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Citrobacter</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gram-positive</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Capsule**

**Vitamin B3 protects mice from glaucoma**

Glaucoma is the most common cause of age-related blindness in the United States. There is currently no cure, and once vision is lost the condition is irreversible. Williams et al. report that vitamin B3 (also known as niacin) prevents eye degeneration in glaucoma-prone mice. Supplementation of young mice with vitamin B3 averted early signs of glaucoma. Vitamin B3 also halted further glaucoma development in aged mice that already showed signs of the disease. Thus, healthy intake of vitamin B3 may protect eyesight.

Science 2017; 355: 756

Eitan Israeli

**Capsule**

**Interspecies organogenesis generates autologous functional islets**

Islet transplantation is an established therapy for diabetes. Yamaguchi and team previously showed that rat pancreata can be created from rat pluripotent stem cells (PSCs) in mice through interspecies blastocyst complementation. Although they were functional and composed of rat-derived cells, the resulting pancreata were of mouse size, rendering them insufficient for isolating the numbers of islets required to treat diabetes in a rat model. Now, by performing the reverse experiment – injecting mouse PSCs into Pdx-1-deficient rat blastocysts – the authors generated rat-sized pancrea composed of mouse-PSC-derived cells. Islets subsequently prepared from these mouse–rat chimeric pancreata were transplanted into mice with streptozotocin-induced diabetes. The transplanted islets successfully normalized and maintained host blood glucose levels for over 370 days in the absence of immunosuppression (excluding the first 5 days after transplant). These data provide proof-of-principle evidence for the therapeutic potential of PSC-derived islets generated by blastocyst complementation in a xenogeneic host.

Nature 2017; 542: 191

Eitan Israeli