Inflammatory bowel diseases (IBD) are disorders of chronic intestinal inflammation of unknown etiology. The basic pathophysiological process is that of immune mediated inflammation affecting the intestinal tract. This process is dependent on and governed by both genetic and environmental factors. There are two distinct forms of IBD – ulcerative colitis and Crohn’s disease. While ulcerative colitis affects only the colon, with superficial inflammation of the mucosal layer only, Crohn’s disease causes transmural inflammation which may involve any part of the gastrointestinal tract [1,2].

The clinical manifestations may be quite variable, but both disorders run a chronic course of alternating exacerbations and remissions. Symptoms include abdominal pain and diarrhea, often with blood, especially when the colon is involved. Importantly, there is an increased risk of cancer of the involved organs. Both disorders may also involve extra-intestinal organs, such as the skin, joints and eyes, as well as the skeletal or hepatobiliary systems [3].

The treatment of IBD focuses on ameliorating the inflammatory process. This includes anti-inflammatory agents, such as 5-aminosalicylic acid. Since bacterial infections may be involved primarily or secondarily, antibiotics are also often used. In most cases, patients will need a variety of immunomodulatory therapies, such as corticosteroids, thiopurines or methotrexate. More recently, therapeutic options have widened to include biological agents. These monoclonal antibodies target specific cytokines, which are active in the inflammatory process [4].

Despite the relatively wide spectrum of therapeutic agents, the medical response remains incomplete. Corticosteroids, the most potent agents, achieve a remission rate of up to 80%, but due to significant side effects cannot be used for long-term maintenance [5]. Most other immunomodulators as well as biological therapies provide a remission rate of 50–60% only, and there is no curative medical treatment. Furthermore, over 30% of patients, and over 70% with Crohn’s disease, will need surgical intervention for their disease [6].

Thus, it comes as no surprise that many patients will turn to complementary or alternative medicine at some stage of their disease. Recent information reveals that between 16% and 50% of patients admit to having tried marijuana for their symptoms [7]. There is a long list of gastrointestinal symptoms that have been reported to be relieved by cannabis. These include anorexia, nausea, abdominal pain, diarrhea, gastroparesis – all of which can be part of IBD [8]. These effects are related to the fact that the gastrointestinal tract is rich in cannabinoid (CB) receptors and their endogenous ligands, comprising together the endocannabinoid system (ECS). CB1 receptors can be found predominantly in the enteric nervous system and the epithelial lining. Additionally, CB1 is found in extrinsic fibers of the enteric nervous system, plasma cells, and in smooth muscle cells of blood vessels within the colonic wall [9]. CB2 receptors are mainly present in immunocytes, myenteric plexus neurons, and in epithelial cells during ulcerative colitis [9]. The ECS participates in the regulation of gastrointestinal motility, secretion, inflammation and the maintenance of the epithelial barrier integrity [9,10]. Functionally, endocannabinoids have been shown to decrease intestinal hypermotility and hypersecretion and to modulate intestinal inflammation and permeability [11].

The phytocannabinoids, mainly Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), exert their effect via the ECS, and many studies have shown them to be beneficial in inflammation outside and within the gastrointestinal tract. Both synthetic and endogenous cannabinoids inhibit lipopolysaccharide-induced release of tumor necrosis factor-alpha (TNFα) from microglial cells [12]. In a mouse model of trinitrobenzene sulfonic acid (TNBS)-induced colitis, intraperitoneal treatment with CBD led to the amelioration of colonic inflammation [13]. In another study of TNBS colitis in mice, THC and CBD not only reduced inflammation but also protected cholinergic nerves, reversing motility disturbances caused by inflammation. The effects of these phytocannabinoids were additive [14]. In another model of chronic colitis in IL-10 knockout mice, the cannabinoid receptor-2 (CB2) agonist JWH-133 effectively attenuated colitis score [15]. Other phytocannabinoids such as cannabigerol (CBG) were also shown to be effective in ameliorating experimentally induced colitis [16].
It is against this background, paralleled with increasing patient demand for prescriptions of medical cannabis that we became interested in the potential role of cannabis and cannabinoids in IBD. Surprisingly, a PubMed search in 2009 of cannabis in human IBD yielded a result of no (zero) publications. This prompted us to undertake an observational study of the use of cannabis in IBD in Israel. For this purpose, we obtained a list of licensed users of Medical Cannabis within the database of Tikun Olam, a company that grows and supplies medical cannabis by license of the Ministry of Health. We found 30 patients with the diagnosis of Crohn’s disease, who we contacted and interviewed for clinically relevant data. Most patients smoked cannabis as “joints” (0.5 g cannabis/joint) and used between one and three joints/day. The Harvey-Bradshaw index (indicating disease activity) deceased from an average of 14 ± 6.7 before cannabis consumption to 7 ± 4.7 (P < 0.001). The use of other medications, including 5-ASA, corticosteroids, thiopurine, methotrexate, and TNF antagonists also appeared to be significantly reduced following the use of cannabis. Fifteen of the patients had 19 surgeries during an average period of 9 years before cannabis use, but only 2 required surgery during an average period of 3 years of cannabis use [17].

These results prompted us to conduct the first randomized placebo-controlled trial of cannabis in Crohn’s disease [18]. The study included 21 active Crohn’s disease patients who received cannabis cigarettes containing 23% of THC or placebo for 8 weeks. Complete remission (Crohn’s Disease Activity Index, CDAI, score < 150) was achieved by 5/11 subjects in the cannabis group (45%) and 1/10 in the placebo group (10%, from 373 ± 94 to 306 ± 143, P = 0.028). A clinical response (decrease in CDAI score > 100) was observed in 10/11 subjects in the cannabis group (90%, from 330 ± 105 to 152 ± 109) and 4/10 in the placebo group (40%, from 373 ± 94 to 306 ± 143, P = 0.43). A clinical response (decrease in CDAI score > 100) was observed in 10/11 subjects in the cannabis group (90%, from 330 ± 105 to 152 ± 109) and 4/10 in the placebo group (40%, from 373 ± 94 to 306 ± 143, P = 0.43). A clinical response (decrease in CDAI score > 100) was observed in 10/11 subjects in the cannabis group (90%, from 330 ± 105 to 152 ± 109) and 4/10 in the placebo group (40%, from 373 ± 94 to 306 ± 143, P = 0.43).

In conclusion, use of cannabis is common in IBD, and it seems to be mostly safe. Accumulating preliminary data from human studies support a beneficial role of cannabinoids in IBD. Whether the effect is anti-inflammatory, central or other remains speculative at this stage. Despite active interest within the gastroenterology community following our initial randomized controlled trial (RCT) of cannabis in CD, it still remains the sole RCT published. Thus, additional controlled trials in larger patient populations are clearly needed. These should focus on optimizing delivery mode and dosage, as well as evaluating clinical efficacy. Data should be correlated with experimental laboratory data. Hopefully, these will lead to the identification of the effective cannabinoid(s) for clinical use. Last, but not least, careful monitoring of the effects and side effects in patients within studies as well as out of studies remains crucial.

Acknowledgment

F.K. was supported in part by the Josefina Maus and Gabriela Cesarman Chair for Research in Liver Diseases, Sackler Faculty of Medicine, Tel Aviv University.
Correspondence
Dr. T. Naftali
Institute of Gastroenterology and Hepatology, Meir Hospital, Kfar Saba 44281, Israel
Phone: (972-9) 747-2473
Fax: (972-9) 747-7775
email: timna.naftali@clalit.org.il, fred.konikoff@clalit.org.il

References

Capsule

Tracking extracellular space in the brain

Extracellular space takes up a large percentage of the brain. Its size changes with the sleep-wake cycle but also during brain development and normal aging, as well as under pathological conditions such as neurodegeneration. Godin et al. injected near-infrared luminescent carbon nanotubes into rat brains and tracked their diffusion in the extracellular space. This method revealed the dimensions of the extracellular space in live brain tissue. The extracellular space turned out to be a maze of interconnected compartments of multiple shapes that are structured in a wide range of different dimensions. This novel technique thus allows neuroscientists to observe fine structures of the extracellular space and provides insights into the flow of cerebrospinal fluid in the brain.

Nat Nanotech 2016; 10.1038/NNANO.2016.248

Eitan Israeli

Capsule

Initiating an antitumor attack

Cancer is notorious for relapsing after treatment. Such relapses are driven by tumor-initiating cells, a type of stem cell that gives rise to tumors. Damelin et al. determined that a protein called PTK7 is frequently present on tumor-initiating cells and developed an antibody-drug conjugate targeting it. In mouse models of several tumor types, the therapy reduced tumor-initiating cells and outperformed standard chemotherapies. The antibody-drug conjugate also reduced tumor angiogenesis and promoted antitumor immunity, possibly contributing to its effectiveness.

Sci Transl Med 2017; 9: eaag2611

Eitan Israeli