Paroxysmal Tonic Upward Gaze at Adolescence: A Girl with Prader-Willi Syndrome

Itai Gross MD1 and Varda Gross-Tsur MD2

1Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
2Neuropediatric Unit, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel

KEY WORDS: Prader-Willi syndrome (PWS), ophthalmology, paroxysmal tonic upward gaze (PTUG), ataxia, imprinting disorders

PATIENT DESCRIPTION

A 13 year old adolescent female with PWS due to a paternal deletion on 15q11-q13 was treated from early age with an early-intervention holistic program and had received growth hormone treatment from the age of 6 months. Developmentally, she achieved most milestones as expected; she attended special educational frameworks due to mild mental retardation, learning disabilities and autistic spectrum disorder. She manifested obsessive-compulsive behavior, behavioral problems and attention deficit hyperactivity disorder pharmacologically treated with fluvoxamine, risperidone and methylphenidate, respectively. Food-related issues were under control. The girl had strabismus since birth which was corrected surgically at age 6 years.

At the age of 13, two episodes of sustained conjugate upward deviation of the eyes occurred, with neck flexion and down-beating saccades with no ataxia; during these episodes consciousness was maintained [Figure 1]. These episodes lasted 12 hours and resolved spontaneously. On examination, several days after the second episode, her weight was 39.6 kg (37th percentile), body mass index 21.2 (82nd percentile), and physical examination, aside from central hypotonicity, was normal. Neither PTUG movements nor ataxia was observed. Ophthalmologic examination revealed: right eye – myopia and amblyopia. There was no stereo vision.

Electroencephalogram (EEG) was normal, and no epileptic activity was recorded. Brain magnetic resonance imaging (MRI) was normal. Genetic testing for mutations on the CACNA1A gene on chromosome 19 revealed no pathology.

COMMENT

PWS is a complex neurogenetic, multisystem disorder with a prevalence of 1/15,000 to 1/30,000, caused by a lack of expression of genes on the paternally inherited chromosome 15q11.2-q13. Ophthalmologic morbidity is common, and includes myopia, strabismus, exotropia, esotropia as well as reduced visual acuity, iris hypopigmentation, amblyopia, refractive errors and astigmatism [1]. Despite the variable ocular abnormalities PTUG has not been reported in individuals with Prader-Willi syndrome.

Paroxysmal tonic upward gaze in childhood is characterized by episodes of sustained conjugate upward deviation of the eyes with neck flexion, down-beating saccades in attempted downward gaze, and normal horizontal eye movements. Ataxia, in some cases, accompanies PTUG. Consciousness is maintained during these episodes and neurological exam is usually intact. PTUG appears usually before age 1 year or during early childhood. The oldest child described is a 9 year old boy [2,3]. The duration and frequency are variable: episodes usually last seconds, but in rare cases they can continue for more than 24 hours. The frequency ranges from daily episodes to once in several months. Exacerbations are common during febrile illnesses or after

Figure 1. Episode of upward deviation of the eyes and neck flexion

![Figure 1. Episode of upward deviation of the eyes and neck flexion](image-url)
vaccinations [2]. The episodes are relieved by sleep and disappear spontaneously. Ataxia, ocular disability, language problems, mild cognitive or even (rarely) severe cognitive disorder may remain [2].

There is controversy in the literature regarding the efficacy and need of drug treatment for PTUG. Drugs that have been tested are L-DOPA, ACTH, acetazolamide, and antiepileptic drugs such as valproic acid, carbamazepine and benzodiazepines [2,3].

Although the etiology of PTUG is obscure in most cases [2], a genetic basis of PTUG was identified in some instances. There are a few familial cases with autosomal recessive and autosomal dominant inheritance [4]. A mutation in the CACNA1A gene, on chromosome 19, causing calcium channelopathy was reported in five cases. CACNA1A is linked to other paroxysmal disorders, such as benign paroxysmal torticollis of infancy, episodic ataxia, hemiplegic migraine and paroxysmal vertigo [4].

In addition to our patient, PTUG has been reported in two other children with chromosome 15 abnormalities. The first was a 3 month old infant with partial tetrasomy of chromosome 15, and the second, a 2 year old girl with Angelman syndrome caused by a maternal deletion of 15q11-13 [5]. PTUG was described in two other imprinting disorders: one was a case of a 2 week old boy with Beckwith Wiedemann syndrome [3] and the other was the above mentioned girl with Angelman syndrome [5]. Although the vast majority of cases with PTUG show no brain abnormalities on imaging [2,4], there are rare case reports of demyelinating pathology [4], upper brain stem lesions, periventricular leukomalacia, hydrocephalus and a vein of Galen malformation [3]. EEG and metabolic findings are generally normal, but association with epileptic disorders has been reported [2,4]. Due to the early onset of PTUG some researchers hypothesized that it may be caused by either immaturity of eye movement control or secondary to a channelopathy, or due to neurotransmitter depletion [2,3]. Fukumura et al. [5] speculated that the dopaminergic abnormalities present in Angelman syndrome may cause PTUG [5].

In our case, the cause of PTUG is unclear: there was no clinical or laboratory evidence of epilepsy, structural brain anomalies, CACNA1A gene abnormalities, or maturational abnormalities in eye movement control. The girl was treated for years with fluvoxamine, risperidone and methylphenidate (MPH) before the PTUG onset. Fluvoxamine can cause, in rare cases, ophthalmologic adverse effects such as amblyopia, and risperidone is known to cause blurred vision, conjunctivitis and reduced visual acuity. MPH works through dopaminergic pathways, which were hypothesized to explain the pathophysiological basis of PTUG; nonetheless, our patient was treated with MPH for years at the same dosage. Neither of these drugs was reported to cause PTUG.

In summary, we describe a 13 year old adolescent with PWS who had PTUG, the oldest case reported. Genetic causes may elucidate the etiology of PTUG in some cases. Imprinting genetic disorders and abnormalities on chromosome 15 should be suspected in cases with PTUG and developmental disorders. Further genetic and epigenetic studies may shed light on the precise etiology of PTUG.

Correspondence
Dr. I. Gross
Dept. of Pediatrics, Hadassah Hadassah Medical Center (Ein Kerem Campus), Jerusalem 91120, Israel
Fax: (972-2) 533-4029
email: italgross@gmail.com

References

Capsule
Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome

One paradigm in transplantation is that graft-infiltrating T cells are largely non-alloreactive “bystander” cells. However, the origin and specificity of allograft T cells over time have not been investigated in detail in animals or humans. Zuber and co-researchers used polychromatic flow cytometry and high-throughput T cell receptor sequencing of serial biopsies to show that gut-resident T cell turnover kinetics in human intestinal allografts are correlated with the balance between intragraft host-versus-graft (HvG) and graft-versus-host (GvH) reactivities and with clinical outcomes. In the absence of rejection, donor T cells were enriched for GvH-reactive clones that persisted in the long term in the graft. Early expansion of GvH clones in the graft correlated with the rapid replacement of donor antigen-presenting cells by the recipient. Rejection was associated with transient infiltration by blood-like recipient CD8+ NKG2D+ CD8+ αβ T cells, marked predominance of HvG clones, and accelerated T cell turnover in the graft. Ultimately, these recipient T cells acquired a steady-state tissue-resident phenotype but regained CD8 expression during rejections. Increased ratios of GvH to HvG clones were seen in non-rejectors, potentially mitigating the constant threat of rejection posed by HvG clones persisting within the tissue-resident graft T cell population.

Eitan Israeli