Mammographic Breast Density as a Predictor of Radiological Findings要求 Further Investigation

Avinoam Nevler MD1,2, Esther Shabtai MD4, Danny Rosin MD1, Aviad Hoffman MD1, Mordechai Gutman MD1 and Moshe Shabtai MD1,3

1Department of Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
2Borenstein Talpiot Medical Leadership Program 2012, Sheba Medical Center, Tel Hashomer, Israel
3Meirav Breast Center, Sheba Medical Center, Tel Hashomer, Israel
4Statistics Unit, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

ABSTRACT: Background: High density breast mammography has been associated with a greater risk for breast cancer and an increased likelihood of false negative results.

Objectives: To assess whether the degree of mammographic breast density correlates with increased risk for the presence of radiographic findings requiring further histological investigation.

Methods: Included in the study were 2760 consecutive screening mammograms performed in a large volume, early detection mammography unit. All mammograms were complemented by high resolution ultrasound and interpreted by a single expert radiologist. Breast density (BD) was evaluated using a semi-quantitative 5 grade scale and grouped into low breast density (LBD) and high breast density (HBD) mammograms. Demographic and all relevant obstetric, personal and family history of breast cancer data were recorded.

Results: Of the 2760 mammograms 2096 (76%) were LBD and 664 (24%) were HBD. Mean age of the LBD and HBD groups was 59 ± 10.5 and 50.9 ± 9.3 years respectively (P = 0.001). Breast density significantly correlated with presence of mammographic findings requiring further histological assessment (8.7% and 12.3% for LBD and HBD respectively, P < 0.01). In women younger than 60 years in whom histological assessment was required due to these findings, malignant pathology was significantly more prevalent in the HBD group (2.3% and 4.1% respectively, P = 0.03). Age, parity, patient history and HBD were identified as independent risk factors for any pathological mammographic finding.

Conclusions: Highly dense mammography, aside from being an indicator of higher risk for breast cancer, appears to be associated with a significantly higher incidence of findings that will prompt further investigation to achieve a definite diagnosis.

KEY WORDS: breast, mammographic density, risk factors, breast neoplasm

Breast cancer is the most common malignant disease afflicting women worldwide, comprising a sixth of all female cancers (according to the World Health Organization, 2011). Timely diagnosis of breast malignancy depends highly on adequate imaging and recognition of the apparent breast pathology. Breast density is a key factor affecting the radiographic appearance of the breast, which changes with age and correlates with the ratio between the fatty and glandular parenchymal components of the breast. Women younger than 35 years display dense breast tissue on mammography in 65% of cases, compared to only 20–15% of cases in women older than 65 [1]. High breast density (BD) has been shown to be associated with increased risk for breast cancer both as an independent factor and as an obscuring element masking the radiographic pathological findings and delaying time of the diagnosis [2-9].

As a result, some breast cancers escape detection by mammography screening [10,11]. This has raised intense debate as to the role of complementary screening methods such as breast sonography, magnetic resonance imaging (MRI) or 3D-tomography in patients shown to have high BD.

The association between breast density and the need for further radiological and/or surgical assessment was previously described by Carney and colleagues [12]. However, although age > 60 years and heterogeneously/extremely dense breasts correlated with higher likelihood of requiring biopsy and/or surgical consult in one patient subpopulation, no further data were recorded as to whether a surgical intervention/biopsy was performed and the histologic results of those procedures, if performed.

The aims of this study were to analyze the data from our experience in a large tertiary medical center, identify a possible correlation between the degree of mammographic density and the presence of any finding requiring further histologic investigation (tissue biopsy or surgical intervention), and assess correlation with specific histological diagnoses.

PATIENTS AND METHODS

The study included 2760 screening mammograms performed during 1 year (2004–2005) in a high volume early detection
mammography unit within a large tertiary university-affiliated medical center. All mammograms were complemented by high resolution ultrasound performed and interpreted by a single expert breast radiologist. Breast density was evaluated in all mammograms using a semi-quantitative 5 grade scale [13] and grouped into low density (1–3, LBD) and high density (4–5, HBD) mammograms.

All demographic and additional relevant obstetric as well as family and personal history of breast cancer data were entered into a database. Test results were entered as normal or as the presence of any of the following: lump (cystic or solid), distorted tissue architecture or density [14], and suspicious calcifications. The study protocol was approved by the Sheba Medical Center institutional review board.

Statistical analysis was performed using SAS 9.2. Chi-square test was used for categorical variables. Odds ratios (OR) and 95% confidence interval (CI95%) were calculated for each test was used for categorical variables. Odds ratios (OR) and P

\[P = 0.001 \]

respectively, significantly higher compared to the LBD group (6.6% and 0.8% respectively, OR 3.3% and 2.7% respectively, OR 1.54, CI95% 1.11–9.10, P = 0.0002). Tissue irregularity did not differ significantly between the HBD and LBD groups (3.3% and 2.7% respectively, P = NS). Tissue histology revealed malignant pathology in 74 patients in the LBD group and 30 patients in the HBD group (3.5% and 4.5% respectively, OR 1.29, P = NS).

High risk non-malignant breast pathologies (atypical ductal hyperplasia and lobular carcinoma in situ) were more frequent in the HBD group (1.05% vs. 0.33% in concordance, OR 3.18, CI95% 1.11–9.10, P = 0.03). Malignant findings of invasive breast cancer (IDC/ILC) did not differ significantly between breast density groups. Occurrence of ductal carcinoma in situ (DCIS) was more prevalent in the HBD group (3.6% vs. 1.2%, OR 3.10, CI95% 1.76–5.47, P = 0.0001).

Analysis of the impact of breast density on mammographic findings in women younger than 60 years is presented

RESULTS

Over the period of 1 year 2760 screening mammograms were performed. Mean overall age was 56 years (± 10.7) and 71% were post-menopausal. Group demographic characteristics are presented in Table 1. Of the 2760 mammograms 2096 (76%) were LBD and 664 (24%) HBD. The mean age of the patients in both groups was 59 ± 10.5 years and 50.9 ± 9.3 years respectively (P = 0.001). Group and subgroup structure is presented in Figure 1. A total of 1459 mammographic findings were detected in 1272 women (46.0%). LBD and HBD significantly correlated with the presence of mammographic findings requiring histological assessment: 8.7% and 12.3% respectively, OR 1.54, CI95% 1.17–2.03, P = 0.002. Thus, in the HBD group the incidence of a solid lump (9%) and suspicious calcifications (4.4%) were significantly higher compared to the LBD group (6.6% and 1.8% respectively, P = 0.001 and P = 0.0002). Tissue irregularity did not differ significantly between the HBD and LBD groups (3.3% and 2.7% respectively, P = NS). Tissue histology revealed malignant pathology in 74 patients in the LBD group and 30 patients in the HBD group (3.5% and 4.5% respectively, OR 1.29, P = NS).

<table>
<thead>
<tr>
<th>N</th>
<th>Overall</th>
<th>Age < 60</th>
<th>Age ≥ 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>2760</td>
<td>1824</td>
<td>936</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>56.0 (10.7)</td>
<td>68.1 (6.3)</td>
<td>49.9 (6.5)</td>
</tr>
<tr>
<td>Mean mammographic density</td>
<td>2.7 (1.1)</td>
<td>2.9 (1.1)</td>
<td>2.2 (0.9)</td>
</tr>
<tr>
<td>Unknown cases</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Age at menarch (years)</td>
<td>13.0 (1.7)</td>
<td>13.0 (1.4)</td>
<td>13.2 (1.4)</td>
</tr>
<tr>
<td>Unknown cases</td>
<td>75 (2.7%)</td>
<td>45 (2.5%)</td>
<td>30 (3.2%)</td>
</tr>
</tbody>
</table>

Data presented as mean (standard deviation) or n (%)

HRT = hormone replacement therapy

![Figure 1. Overall association of breast density in screening mammographies with mammographic findings](image-url)
in a large cohort of screening mammographies performed in a single tertiary center and assessed by a single expert breast radiologist. Our results showed that highly dense breasts had a significantly larger proportion of solid lumps and suspicious calcifications. Women with denser breast tissue had a higher probability of requiring further investigational procedures such as core needle biopsy or excisional surgical biopsy. Furthermore, in the group of women younger than 60, higher breast cancer rates were noted in the HBD group (OR 1.84, CI95% 1.05–3.20, \(P = 0.03 \)). These findings correspond to the study published by Tesic and colleagues [15] who analyzed a multi-center cohort of 52,752 women who had undergone a screening mammography. Their results showed increased risk for breast cancer (OR 1.9, CI95% 1.3–2.8) among women with dense breasts compared to women with non-dense breasts. A recent similar study by Park and co-authors [16] tested the prognostic value of high volumetric breast density on the risk of breast cancer. An association was found in postmenopausal women (n=1076, \(P < 0.001 \)) but not in premenopausal women.

In our cohort, DCIS was the only tumor subtype significantly correlating to mammographic breast density in both the general and the younger age group (OR 3.10 and OR 4.09, respectively). Bertrand et al. [17] recently published their findings on the effect of mammographic breast density on breast tumor subtype based on data pooled from six studies that included a total of 10,613 women who underwent screening mammography. Similar to our results, their study found a difference in the association of mammographic density with DCIS for women aged < 55 years compared with those aged \(\geq 55 \). The researchers noted that younger women with high mammographic density had increased risk of DCIS.

Few studies have investigated the association between high risk non-malignant breast pathologies (such as atypical ductal hyperplasia, atypical lobular hyperplasia and lobular carcinoma in situ) and mammographic breast density. The statistically significant association between high mammographic breast density and presence of such lesions in the histological specimen described in the present study may explain the high risk phenotype attributed to high breast density.

The optimal imaging for highly dense breast remains a matter of debate. Modalities such as MRI and automated 3D breast sonography have been used separately or combined with image analysis segmentation algorithms in assessment of the breast [18–22]. This increased risk for invasive procedure due to suspicious findings must be considered when evaluating the cost-effectiveness of new complementary imaging modalities for women with high breast density [23–25].

CONCLUSIONS

The results of our study further emphasize the need to regard high breast density as an independent risk factor for breast disease, associated with a significantly increased incidence of

* Oregon, California, Nevada, Alaska, Hawaii, Texas, Minnesota, Missouri, Tennessee, Alabama, North Carolina, Virginia, Maryland, New Jersey, Pennsylvania, New York, Connecticut, Rhode Island, Massachusetts
findings that will prompt further investigation to achieve a
definite diagnosis. Due to the lower sensitivity of mammogra-
phy in patients with highly dense parenchyma, it is likely that
the true incidence of non-malignant findings is even higher.

Correspondence
Dr. A. Nevel
Dept. of Surgery and Transplantation, Sheba Medical Center, Tel Hashomer
52624, Israel
Phone: (972-3) 530-2247
Fax: +972-(0)3-530-8157
email: dr.nevy@gmail.com

References
1. van Gils CH, Otten JD, Verbeek AL, Hendriks JH. Short communication:
breast parenchymal patterns and their changes with age. Br J Radiol 1995; 68:
1133-5.
2. Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk
breast cancer and mammographic density measures that predict disease.
Cancer Res 2010; 70 (4): 1449-58.
4. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and
5. Brisson J, Morrisson AS, Khalid N. Mammographic parenchymal features and
breast cancer in the breast cancer detection demonstration project. J Natl
density and breast cancer risk: the multiethnic cohort study. Am J Epidemiol
7. Olsen AH, Bihrmann K, Jensen MB, Vejborg I, Lynge E. Breast density and
outcome of mammography screening: a cohort study. Br J Cancer 2009; 100:
1205-8.
parenchymal patterns with breast cancer risk factors and risk of breast cancer in
9. Harvey JA, Bovbjerg VE. Quantitative assessment of mammographic breast
Services Task Force. Screening for breast cancer: an update for the U.S. Preventive
11. Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening
12. Carney PA, Kasales CJ, Tosteson AN, et al. Likelihood of additional work-up
among women undergoing routine screening mammography: the impact of
13. Brisson J, Driorio C, Masse B. Wolf’s parenchymal pattern and percentage
of the breast with mammographic densities: redundant or complementary
14. Sickle E. Mammographic features of 300 consecutive nonpalpable breast
15. Tesic V, Kolaric B, Znaor A, Kuna SK, Krkljacic B. Mammographic density
and estimation of breast cancer risk in intermediate risk population. Breast
breast cancer in postmenopausal, but not premenopausal, Korean women.
Ann Surg Oncol 2014 Jun 17. [Epub ahead of print]
17. Bertrand KA, Tamimi RM, Scott CG, et al. Mammographic density and risk of
breast cancer by age and tumor characteristics. Breast Cancer Res 2013; 15
(6): R104.
breast cancer at high risk (MARIBS). Assessing the usefulness of a novel
MRI-based breast density estimation algorithm in a cohort of women at high
20. Giuliano V, Giuliano C. Improved breast cancer detection in asymptomatic
women using 3D-automated breast ultrasound in mammographically dense
density by visual classification (BI-RADS) compared to automated volumetric
using magnetic resonance imaging, digital mammography and a mathematical
23. Vilaprinyo E, Forné C, Carles M, et al; Interval Cancer (INCA) Study
Group. Cost-effectiveness and harm-benefit analyses of risk-based screening
24. Hollingsworth AB, Stough RG. An alternative approach to selecting patients
25. Schouwboe JT, Kerlikowske K, Loh A, Cummings SR. Personalizing mam-
mography by breast density and other risk factors for breast cancer: analysis of

Capsule
Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-
peptide expression patterns

Studies of repertoires of mouse monoclonal CD4+ T cells have revealed several mechanisms of self-tolerance; however, which mechanisms operate in normal repertoires is unclear. Malhotra et al. studied polyclonal CD4+ T cells specific for green fluorescent protein expressed in various organs, which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion, whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus, the immunotolerance of polyclonal CD4+ T cells was maintained by distinct mechanisms, according to self-peptide expression patterns.